
Computational Cognitive Science

Lecture 19: HMMs and more
complex grammars

Last time

‣Because of the problem of long-distance dependencies,
Markov models are not good models of language: they
need to be too large to capture its regularities

‣Because of the problem of long-distance dependencies,
Markov models are not good models of language: they
need to be too large to capture its regularities
‣Grammars that incorporate parts of speech can be useful

for greatly minimising the size of the grammar required

Last time

‣Because of the problem of long-distance dependencies,
Markov models are not good models of language: they
need to be too large to capture its regularities
‣Grammars that incorporate parts of speech can be useful

for greatly minimising the size of the grammar required
‣Hidden Markov models, which involve hidden states that

generate observations, can capture parts of speech

tt-1t-2 t+1

the old man was

det adj n aux

Last time

‣Because of the problem of long-distance dependencies,
Markov models are not good models of language: they
need to be too large to capture its regularities
‣Grammars that incorporate parts of speech can be useful

for greatly minimising the size of the grammar required
‣Hidden Markov models, which involve hidden states that

generate observations, can capture parts of speech
‣We can use such models to generate sequences of

observations in both linguistic and non-linguistic contexts

Last time

Plan

‣ Last time: introduction to HMMs
- Limitations of n-grams applied to language
- Basics of HMMs
‣ Today: finishing HMMs, and more complex structures

- Determining the likelihood of a given observation
- Calculating the most likely state sequence
- Finding the best HMM for given data
- More complex models of language

Plan

‣ Last time: introduction to HMMs
- Limitations of n-grams applied to language
- Basics of HMMs

➡ Today: finishing HMMs, and more complex structures
- Determining the likelihood of a given observation
- Calculating the most likely state sequence
- Finding the best HMM for given data
- More complex models of language

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do
we efficiently compute how likely a
certain observation is?
‣Given a sequence of observations Y

and a model M, how do we infer the
state sequence that best explains the
observations?
‣Given an observation sequence Y and

a space of possible models found by
varying the model parameters M =
(A,B,Π), how do we find the model
that best explains the observed data?

Baum-Welch**
algorithm

* You should be able to implement this; ** You don’t need to be able to implement this

Forward*
algorithm

Viterbi*
algorithm

Three fundamental questions for HMMs

➡ Given a model M = (A,B,Π), how do
we efficiently compute how likely a
certain observation is?
‣Given a sequence of observations Y

and a model M, how do we infer the
state sequence that best explains the
observations?
‣Given an observation sequence Y and

a space of possible models found by
varying the model parameters M =
(A,B,Π), how do we find the model
that best explains the observed data?

* You should be able to implement this; ** You don’t need to be able to implement this

Forward*
algorithm

Viterbi*
algorithm

Baum-Welch**
algorithm

Computing likelihood of observations

For any output sequence Y = (y1,…,yT) we can
calculate the probability of observing it by summing
over all possible sequences of hidden states that

could have generated it:

P(he eats | A,B,Π)
= P(pro|S) P(he|pro) P(verb|pro) P(eats| verb) P(E|verb)

= 0.7 * 0.3 * 1.0 * 0.5 * 1.0
= 0.105

But that was easy, because there was just one way to generate
that observation

Example: simple language
How likely are you to see “he eats”?

P(zzz snort| A,B,Π)

= P (zzz| asleep) P(asleep) P(calm | asleep) P(snort|calm) +
 P(zzz| asleep) P(asleep) P(asleep | asleep) P(snort|asleep)
= (0.9) (0.3) (0.2) (0.8) + (0.9) (0.3) (0.5) (0.1)
= 0.0675 + 0.0135
= 0.081

Example: Mitee the warrior
How likely are you to see “zzz snort”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Output symbol matrix B:

Computing likelihood of observations

You can see that this will grow increasingly difficult as
the HMM grows increasingly larger (or there are fewer

zeros in the transition matrix)

Having to sum over every possible set of hidden states,
in general, requires on the order of NT+1 multiplications,

where T = # of time steps, and N = the number of
states. The complexity is thus O(NT)

Simplifying the computation

Luckily, in order to calculate the most likely path we don’t
have to sum over all possible state sequences

Because of the limited horizon property, the probability of
the path at any one point only depends on the probability

of the current point and the probability of the previous
point

Forward algorithm

An algorithm for efficiently calculating the probability of a
sequence of observations

Incremental: at each observation step, you find the
most likely path until that point

Complexity is O(N2T), assuming a fully connected
model – a big improvement over O(NT)

There is only
one state that

outputs zzz

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble

asleep

roar

There is only
one state that

outputs zzz

P(asleep|S)

P(zzz|asleep) (0.9)(0.3)

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble
0.3; 0.9 asleep

0.27

roar

P(asleep|asleep)
P(snort|asleep)

(0.27)(0.5)(0.1)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

P(calm|asleep)
P(snort|calm)

(0.27)(0.2)(0.8)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

P(asleep|asleep)

P(grumble|asleep)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.5; 0 asleep
0

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

(0.0135)(0.2)(0.2) + (0.0432)(0.2)(0.3)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.5; 0

0.2; 0.2
calm

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

(0.0135)(0.2)(0.2) + (0.0432)(0.2)(0.3)

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

0.5; 0

 (0.0135)(0.2)(0.8) +
(0.0432)(0.2)(0.8)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry

0.2; 0.8

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

0.5; 0

 (0.0135)(0.2)(0.8) +
(0.0432)(0.2)(0.8)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

0.5; 0

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

0.5; 0

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

hungry

0.00313*0.2*0.2 + 0.00907*0.3*0.2

0.2; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

0.3; 0.2 hungry
0.00067

0.00313*0.2*0.2 + 0.00907*0.3*0.2

0.2; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

0.3; 0.2 hungry
0.00067

0.2; 0.2

0.00313*0.1*1.0 +
0.00907*0.5*1.0

0.1; 1.0

angry

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

0.3; 0.2 hungry
0.00067

0.2; 0.2

0.00313*0.1*1.0 +
0.00907*0.5*1.0

0.5; 1.0

0.1; 1.0

angry
0.00485

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

roar

0.5; 0

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00313

hungry
0.00907

0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

0.3; 0.2 hungry
0.00067

0.2; 0.2

0.5; 1.0

0.1; 1.0

angry
0.00485

Total probability of observing
this sequence:

0.00067+0.00485 = 0.055

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0

This is called the forward algorithm, because we
calculated incrementally moving forward in time

zzz snort grumble

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do
we efficiently compute how likely a
certain observation is?

➡ Given a sequence of observations Y
and a model M, how do we infer the
state sequence that best explains the
observations?
‣Given an observation sequence Y and

a space of possible models found by
varying the model parameters M =
(A,B,Π), how do we find the model
that best explains the observed data?

Baum-Welch**
algorithm

Forward*
algorithm

Viterbi*
algorithm

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do
we efficiently compute how likely a
certain observation is?

➡ Given a sequence of observations Y
and a model M, how do we infer the
state sequence that best explains the
observations?

Forward*
algorithm

Viterbi*
algorithm

Idea: what if we maximise as we go through the
trellis, rather than sum up all of the states?

Viterbi algorithm

An algorithm for efficiently calculating the most likely path
through an HMM, given a sequence of observations

Incremental: at each observation step, you find the
most likely path until that point

Complexity is O(N2T), assuming a fully connected
model – a big improvement over O(NT)

There is only
one state that

outputs zzz

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble

asleep

roar

There is only
one state that

outputs zzz

P(asleep|S)

P(zzz|asleep) (0.9)(0.3)

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble
0.3; 0.9 asleep

0.27

roar

P(asleep|asleep)
P(snort|asleep)

(0.27)(0.5)(0.1)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

P(calm|asleep)
P(snort|calm)

(0.27)(0.2)(0.8)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

P(asleep|asleep)

P(grumble|asleep)

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.5; 0 asleep
0

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

(0.0135)(0.2)(0.2) = 0.00054

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.5; 0

0.2; 0.2
calm

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

0.00054

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

(0.0135)(0.2)(0.2) = 0.00259

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00259

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

0.5; 0

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

0.00259 > 0.00054

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

0.00259

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.5; 0

 (0.0135)(0.2)(0.8) =
0.00216

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2 calm

hungry

0.2; 0.8

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

0.2; 0.2

0.5; 0

0.00216

0.00259

 (0.0432)(0.2)(0.8) =
0.00691

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2 calm

hungry
0.00691

0.2; 0.8

0.2; 0.8

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

0.2; 0.2

0.5; 0

0.00259

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2 calm

hungry
0.00691

0.2; 0.8

0.2; 0.8

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

roar

0.2; 0.2

0.5; 0

0.00691 > 0.00216

0.00259

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

0.5; 0

0.00259

0.00691

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:
Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

hungry

0.00259*0.2*0.2 = 0.000104

0.2; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

roar

0.5; 0

0.00259

0.00691 1.04e-4

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

hungry

0.00691*0.3*0.2 = 0.000415

0.2; 0.2

roar

0.5; 0

0.00259

0.00691 4.15e-4

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.3; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

hungry

0.000415 > 0.000104

roar

0.5; 0

0.00259

0.00691 4.15e-4

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.3; 0.2

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

hungry

roar

0.5; 0

0.00259

0.00691 4.15e-4
0.3; 0.2

0.00259*0.1*1.0 =
0.000259

0.1; 1.0

angry

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

2.59e-4

0.5; 1.0

0.3; 0.2

0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

hungry

roar

0.5; 0

0.00259

0.00691 4.15e-4

0.00691*0.5*1.0 =
0.00345

0.1; 1.0

angry
0.00345

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.5; 1.0

0.3; 0.2

0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

Initial state probabilities Π:
Asleep Calm Angry Hungry

0.3 0.3 0.2 0.2

State transition matrix A: Output symbol matrix B:

Example: Mitee the warrior
How likely are you to see
“zzz snort grumble roar”?

hungry

roar

0.5; 0

0.00259

0.00691 4.15e-4

0.00345 > 0.000259

0.1; 1.0

angry
0.00345

Roar Zzz Snort Grumble

Asleep 0.0 0.9 0.1 0.0
Calm 0.0 0.0 0.8 0.2
Angry 1.0 0.0 0.0 0.0
Hungry 0.2 0.0 0.0 0.8

Asleep Calm Angry Hungry

Asleep 0.5 0.2 0.1 0.2
Calm 0.4 0.3 0.1 0.2
Angry 0.1 0.2 0.6 0.1
Hungry 0.1 0.1 0.5 0.3

0.5; 1.0

0.3; 0.2

0.2; 0.2

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

hungry

roar

0.5; 0

0.00259

0.00691 4.15e-4

0.00345 > 0.000259

0.1; 1.0

angry
0.00345

Given this, is the most likely state sequence
just the one whose states are most probable

at every point in time?

This worked out…

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

roar

0.5; 0

0.00259

0.00691

Given this, is the most likely state sequence
just the one whose states are most probable

at every point in time?

But imagine the transition
probabilities were slightly different

0.1; 0.9
0.00163

0.7; 0.9

0.5; 0.01

0.1;

0.01

3.45e-5

hungry

angry

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

roar

0.5; 0

0.00259

0.00691

Given this, is the most likely state sequence
just the one whose states are most probable

at every point in time?

But imagine the transition
probabilities were slightly different

0.1; 0.9
0.00163

0.7; 0.9

0.5; 0.01

0.1;

0.01

3.45e-5

hungry

angry

Now the most likely
final state is different...

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

roar

0.5; 0

0.00259

0.00691

Given this, is the most likely state sequence
just the one whose states are most probable

at every point in time?

But imagine the transition
probabilities were slightly different

0.1; 0.9
0.00163

0.7; 0.9

0.5; 0.01

0.1;

0.01

3.45e-5

hungry

angry

And so is the most
likely path to that state

0.2; 0.8

zzz snort grumble
0.3; 0.9 0.5; 0.1 asleep

0.0135
asleep

0.27

calm
0.0432

0.3; 0.2

0.2; 0.2
calm

hungry
0.2; 0.8

0.2; 0.8

roar

0.5; 0

0.00259

0.00691

Given this, is the most likely state sequence
just the one whose states are most probable

at every point in time?

But imagine the transition
probabilities were slightly different

0.1; 0.9
0.00163

0.7; 0.9

0.5; 0.01

0.1;

0.01

3.45e-5

hungry

angry

Note that this path
does not include the

state that was
previously most likely

In order to calculate the most likely state sequence,
you need to find the maximum transition at each

point, get to the end, and then backtrack through

This algorithm – finding all of the forward probabilities
(maxima, not sums), and then backtracking – is

called the Viterbi algorithm.

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do
we efficiently compute how likely a
certain observation is?
‣Given a sequence of observations Y

and a model M, how do we infer the
state sequence that best explains the
observations?

➡ Given an observation sequence Y
and a space of possible models found
by varying the model parameters M =
(A,B,Π), how do we find the model
that best explains the observed data?

Baum-Welch**
algorithm

* You should be able to implement this; ** You don’t need to be able to implement this

Forward*
algorithm

Viterbi*
algorithm

Three fundamental questions for HMMs

‣Given a model M = (A,B,Π), how do
we efficiently compute how likely a
certain observation is?
‣Given a sequence of observations Y

and a model M, how do we infer the
state sequence that best explains the
observations?

➡ Given an observation sequence Y
and a space of possible models found
by varying the model parameters M =
(A,B,Π), how do we find the model
that best explains the observed data?

Baum-Welch**
algorithm

* You should be able to implement this; ** You don’t need to be able to implement this

I’ll give the main idea of how it works, but not all of
the nitty-gritty detail. You don’t need to be able to

implement this – I just want to get you started in case
you ever want to.

Baum-Welch algorithm

Basic idea: This is just an EM algorithm! But instead of:

Assignment step (E-step):
 Calculate the likelihood of
each data point in each cluster,
assuming the cluster is a
Gaussian with the current mean,
standard deviation, and weight

Update step (M-step):
 Recalculate the means

 Recalculate the standard
 deviations

 Recalculate the weights

Assignment step (E-step):
 Calculate the probability of the observation
sequence given the current model (A, B, Π)

Update step (M-step):

 Recalculate A
 Recalculate B
 Recalculate Π

Baum-Welch algorithm

Basic idea: This is just an EM algorithm! But instead of:

Forward
algorithm

πi = expected frequency in state i at time t=1

bijk = expected # of transitions from state i to j with k observed
Expected number of transitions from i to j

aij = expected number of transitions from state i to j
Expected number of transitions from state i

Baum-Welch algorithm

‣ Because it is an EM algorithm, it has the same properties:

1. Guaranteed (fairly rapid) convergence, but only to local
maxima, not global maxima

2. Dependence on initial values. In practice, it is especially
important to have good starting points for the output
parameters B; estimates of A are fairly robust to initial
starting point.

Stepping back a bit...

We have defined what a Hidden Markov Model (HMM) is, and
proposed it as a better model for language than an n-gram
model (i.e., a standard Markov Model)

We have seen in detail how it is possible to calculate the most
probable path of hidden states in an HMM, and the probability
of an observation

We have seen in brief how it is possible to figure out (imperfectly)
what the most probable set of transition probabilities (A,B,Π)
are, given a set of observations

Stepping back a bit...

We have defined what a Hidden Markov Model (HMM) is, and
proposed it as a better model for language than an n-gram
model (i.e., a standard Markov Model)

But are HMMs indeed a good model of language?

Not really.

Plan

‣ Last time: introduction to HMMs
- Limitations of n-grams applied to language
- Basics of HMMs

➡ Today: finishing HMMs, and more complex structures
- Determining the likelihood of a given observation
- Calculating the most likely state sequence
- Finding the best HMM for given data
➡ More complex models of language

Still have a parameter explosion problem

det noun

adj

verb
0.2

0.8

0.1

0.9

1.01.0

pro

0.3

0.7
1.0

E

(0.5) verb  eats
(0.5) verb  runs
(0.3) pro  he
(0.3) pro  she
(0.4) pro  it
(0.7) det  the
(0.3) det  a
(0.4) noun  boy
(0.4) noun  dog
(0.2) noun  tiger
(1.0) adj  happy

Still have a parameter explosion problem

det noun

adj

verb
0.2

0.8

0.1

0.9

1.01.0

pro

0.3

0.7
1.0

E

(0.5) verb  eats
(0.3) verb  runs
(0.2) verb  write
(0.3) pro  he
(0.3) pro  she
(0.4) pro  it
(0.7) det  the
(0.3) det  a
(0.4) noun  boy
(0.2) noun  dog
(0.2) noun  tiger
(0.2) noun  students
(1.0) adj  happy

Suppose you want to make it able to
produce: The students write

Now it also produces:
 The dog write
 A students runs
 The students eats
 He write

Still have a parameter explosion problem

As before, you have to add new states to the
model to solve this problem

Still have a parameter explosion problem

det

adj
0.2

0.4

0.1

0.4

1.0

1.0

S

proP
0.15

0.3
1.0

E

(0.5) verbS  eats
(0.5) verbS  runs
(1.0) verbP  write
(0.3) proS  he
(0.3) proS  she
(0.4) proS  it
(0.7) det  the
(0.3) det  a
(0.4) nounS  boy
(0.4) nounS  dog
(0.2) nounS  tiger
(1.0) nounP  students
(1.0) adj  happy

proS

nounP

verbP

1.00.4

nounS0.4
0.5

verbS

1.0

1.0

Still have a parameter explosion problem

It’s made worse if we make the grammar even more complicated

EverbP

verbS

det

adj

proP

proS

nounP

nounS

adj

det

det

S

proP

nounP

nounS

adj

det

adj

proS

Still have a parameter explosion problem

However, you might notice a regularity in this grammmar

EverbP

verbS

det

adj

proP

proS

nounP

nounS

adj

det

det

S

proP

nounP

nounS

adj

det

adj

proS

Still have a parameter explosion problem

However, you might notice a regularity in this grammmar

S
NPP E

NPS

verbP

verbS

NPP

NPS

phrase

Still have a parameter explosion problem

S
NPP E

NPS

verbP

verbS

NPP

NPS

Need to specify what
each phrase means

NPS  proS
NPS  det nounS
NPP  proP
NPP  det nounP

Still have a parameter explosion problem

S
NPP E

NPS

verbP

verbS

NPP

NPS

A grammar like this, which
is formed by “clustering”
states of an HMM, has

phrase structure

NPS  proS
NPS  det nounS
NPP  proP
NPP  det nounP

Still have a parameter explosion problem

S
NPP E

NPS

VPP

VPS

We can even form phrases of
other phrases - if we do that,

we say the grammar has
hierarchical phrase structure

VPS  verbS NPS
VPP  verbP NPP
NPS  proS
NPS  det nounS
NPP  proP
NPP  det nounP

This is a context-free grammar (CFG)

S NPS VPS
S NPP VPP
VPS  verbS NPS
VPP  verbP NPP
NPS  proS
NPS  det nounS
NPP  proP
NPP  det nounP

Context-free grammars can be
formed from an HMM by clustering

states into phrases. They have
hierarchical phrase structure: a key

feature of language

Formal definition of CFG (or PCFG)

(0.5) S  NPS VPS

(0.5) S  NPP VPP
(1.0) VPS  VS NPS

(1.0) VPP  VP NPP

(0.7) NPS  PROS
(0.3) NPS  D NS

(0.7) NPP  PROP
(0.3) NPP  D NP

(0.3) PROS  he
(0.3) PROS  she
(0.4) PROS  it
(0.3) PROP  her
(0.3) PROP  him
(0.4) PROP  it
(0.3) D  a
(0.7) D  the
(0.1) NS  A NS
(0.1) NP  A NP

(0.3) NS  boy
(0.3) NS  tiger
(0.3) NS  dog
(0.2) NP  boy
(0.2) NP  tiger
(0.2) NP  dog
(0.15) NP  school
(0.15) NP  house
(0.5) VS  sees
(0.5) VS  cleans
(0.5) VP  see
(0.5) VP  clean
(1.0) A  happy

{a, the, boy, tiger, dog, school, it, she, her, him, he…}

{S,VPS,VPP,NPS,NPP,PROS,D,NS,PROP,NP,VS,A,VP}
S

Example sentences

(0.5) S  NPS VPS

(0.5) S  NPP VPP
(1.0) VPS  VS NPS

(1.0) VPP  VP NPP

(0.7) NPS  PROS
(0.3) NPS  D NS

(0.7) NPP  PROP
(0.3) NPP  D NP

(0.3) PROS  he
(0.3) PROS  she
(0.4) PROS  it
(0.3) PROP  her
(0.3) PROP  him
(0.4) PROP  it
(0.3) D  a
(0.7) D  the
(0.1) NS  A NS
(0.1) NP  A NP

(0.3) NS  boy
(0.3) NS  tiger
(0.3) NS  dog
(0.2) NP  boy
(0.2) NP  tiger
(0.2) NP  dog
(0.15) NP  school
(0.15) NP  house
(0.5) VS  sees
(0.5) VS  cleans
(0.5) VP  see
(0.5) VP  clean
(1.0) A  happy

The boys clean the house

He sees the dog

She cleans it

The happy dogs see a tiger

Example sentences

(0.3) PROS  he
(0.3) PROS  she
(0.4) PROS  it
(0.3) PROP  her
(0.3) PROP  him
(0.4) PROP  it
(0.3) D  a
(0.7) D  the
(0.1) NS  A NS
(0.1) NP  A NP

(0.3) NS  boy
(0.3) NS  tiger
(0.3) NS  dog
(0.2) NP  boy
(0.2) NP  tiger
(0.2) NP  dog
(0.15) NP  school
(0.15) NP  house
(0.5) VS  sees
(0.5) VS  cleans
(0.5) VP  see
(0.5) VP  clean
(1.0) A  happy

The boys clean the house

He sees the dog

She cleans it

The happy dogs see a tiger

It is relatively easy to expand on this and
add new types of sentences

(0.5) S  NPS VPS

(0.5) S  NPP VPP
(0.5) VPS  VS NPS

(0.5) VPS  VS

(0.5) VPP  VP NPP
(0.5) VPP  VP
(0.7) NPS  PROS
(0.3) NPS  D NS

(0.7) NPP  PROP
(0.3) NPP  D NP

She cleans

The boys see

Example sentences

(0.5) S  NPS VPS

(0.5) S  NPP VPP
(0.4) VPS  VS NPS

(0.2) VPS  VS NPS PP
(0.4) VPS  VS
(0.4) VPP  VP NPP

(0.2) VPP  VP NPP PP
(0.4) VPP  VP

(0.6) NPS  PROS
(0.3) NPS  D NS

(0.6) NPP  PROP
(0.3) NPP  D NP

(0.1) NPS  NPS PP
(0.1) NPP  NPP PP

(0.5) PP  P NPS

(0.5) PP  P NPP
(0.3) PROS  he
(0.3) PROS  she
(0.4) PROS  it
(0.3) PROP  her
(0.3) PROP  him
(0.4) PROP  it
(0.3) D  a
(0.7) D  the
(0.1) NS  A NS
(0.1) NP  A NP

(0.5) P  with
(0.5) P  behind

(0.3) NS  boy
(0.3) NS  tiger
(0.3) NS  dog
(0.2) NP  boy
(0.2) NP  tiger
(0.2) NP  dog
(0.15) NP  school
(0.15) NP  house
(0.5) VS  sees
(0.5) VS  cleans
(0.5) VP  see
(0.5) VP  clean
(1.0) A  happy

The boys behind the school clean the
house.

She sees the dog behind a tiger

He sees the dog with it

Context free grammars

Yield sentences with hierarchical phrase structure, in which
phrases can be nestled hierarchically within one another.

S

NPS

VPS

PROS VS

NPS

seesShe

NPS

D NS

manthe

PP

D NS

the

P

with telescope

This is known as a parse tree for that
sentence, and parsing is the act of

figuring out the parse trees for a given
sentence.

Context free grammars

Many sentences are ambiguous - they have multiple possible
parse trees

S

NPS

VPS

PROS VS

NPS

seesShe

NPS

D NS

manthe

PP

D NS

the

P

with telescope

Context free grammars

Many sentences are ambiguous - they have multiple possible
parse trees

S

NPS

VPS

PROS VS

NPS

seesShe

NPS

D NS

manthe

PP

D NS

the

P

with telescope

NPS

Context free grammars

This can often be a source of unintentional humour

Don’t let worry kill you – let the church help.

Ingres enjoyed painting his models nude.

Visiting relatives can be boring.

Iraqi head seeks arms

Grandmother of eight makes hole in one

Two sisters reunite after eighteen years at
checkout counter

Dr. Ruth to talk about sex with newspaper editors

Context free grammars

These sorts of misunderstandings are one of the
pieces of evidence suggesting that the underlying

parse trees are psychologically “real”

Using context-free grammars

The probability of a parse is the probability of each of the
rules used to generate that parse

(0.5) S  NPS VPS
(0.6) NPS  PROS

(0.3) PROS  she
(0.2) VPS  VS NPS PP
(0.5) VS  sees
(0.3) NPS  D NS
(0.7) D  the
(0.3) NS  man
(0.5) PP  P NPS
(0.5) P  with
(0.7) D  the
(0.2) NS  telescope

0.5*0.6*0.3*0.2*0.5*0.3*0.7*0.3*0.5*0.5*0.3*0.7*0.2 = 5.95e-6

Using context-free grammars

(0.5) S  NPS VPS
(0.6) NPS  PROS

(0.3) PROS  she
(0.2) VPS  VS NPS PP
(0.5) VS  sees
(0.3) NPS  D NS
(0.7) D  the
(0.3) NS  man
(0.5) PP  P NPS
(0.5) P  with
(0.7) D  the
(0.2) NS  telescope

If the sentence is ambiguous, you need to add the probabilities
of each of the possible parses

0.5*0.6*0.3*0.2*0.5*0.3*0.7*0.3*0.5*0.5*0.3*0.7*0.2 +
0.5*0.6*0.3*0.4*0.5*0.3*0.3*0.7*0.3*0.5*0.5*0.3*0.7*0.2 = 9.52e-6

Using context-free grammars

More massive grammar = more ambiguous sentences.

Grammars that are typically used in computational linguistics have
many ambiguous parses.

Using context-free grammars

A PCFG gives some idea of the plausibility of different
parses; however, this is often not very linguistically

accurate, since it doesn’t take into account semantics
(meaning) or local lexical context

5.95e-6 4.07e-6

Using context-free grammars

Real language contains a lot of grammatical mistakes; PCFGs
can be fairly robust to those, at the price of having many

incorrect (but very low-probability) rules.

(0.5) S  NPS VPS

(0.6) NPS  PROS
(0.3) PROS  she
(0.4) VPS  VS NPS

(0.5) VS  sees
(0.29) NPS  D NS

(0.01) NPS  D X NS
(0.7) D  the
(0.3) NS  man
(0.5) PP  P NPS
(0.5) P  with
(0.7) D  the
(0.2) NS  telescope
(1.0) X  uh

Using context-free grammars

CFGs are useful because:

They are tractable, and more realistic models of
language than HMMs or n-grams

But we still use HMMs and n-grams because:

They are much more tractable, and scale better
with large vocabularies.

In practice, most state-of-the-art stuff combines
these different techniques to try to take
advantage of the best aspects of each

Summary

‣ Hidden Markov models: Markov models with hidden states (often
corresponding to parts of speech) do better than n-grams, although
still have parameter explosion problems
‣ Forward algorithm: calculate the probability of an observation
‣ Viterbi algorithm: calculate the most likely path through an HMM
‣ Baum-Welch algorithm: figure out the most likely model given a set
of observations
‣ Context free grammars: Are a much better model for language
because they have hierarchical phrase structure

Summary

‣ Hidden Markov models: Markov models with hidden states (often
corresponding to parts of speech) do better than n-grams, although
still have parameter explosion problems
‣ Forward algorithm: calculate the probability of an observation
‣ Viterbi algorithm: calculate the most likely path through an HMM
‣ Baum-Welch algorithm: figure out the most likely model given a set
of observations
‣ Context free grammars: Are a much better model for language
because they have hierarchical phrase structure

Summary

‣ Hidden Markov models: Markov models with hidden states (often
corresponding to parts of speech) do better than n-grams, although
still have parameter explosion problems
‣ Forward algorithm: calculate the probability of an observation
‣ Viterbi algorithm: calculate the most likely path through an HMM
‣ Baum-Welch algorithm: figure out the most likely model given a set
of observations
‣ Context free grammars: Are a much better model for language
because they have hierarchical phrase structure

Summary

‣ Hidden Markov models: Markov models with hidden states (often
corresponding to parts of speech) do better than n-grams, although
still have parameter explosion problems
‣ Forward algorithm: calculate the probability of an observation
‣ Viterbi algorithm: calculate the most likely path through an HMM
‣ Baum-Welch algorithm: figure out the most likely model given a set
of observations
‣ Context free grammars: Are a much better model for language
because they have hierarchical phrase structure

Summary

‣ Hidden Markov models: Markov models with hidden states (often
corresponding to parts of speech) do better than n-grams, although
still have parameter explosion problems
‣ Forward algorithm: calculate the probability of an observation
‣ Viterbi algorithm: calculate the most likely path through an HMM
‣ Baum-Welch algorithm: figure out the most likely model given a set
of observations
‣ Context free grammars: Are a much better model for language
because they have hierarchical phrase structure

Summary

‣ Hidden Markov models: Markov models with hidden states (often
corresponding to parts of speech) do better than n-grams, although
still have parameter explosion problems
‣ Forward algorithm: calculate the probability of an observation
‣ Viterbi algorithm: calculate the most likely path through an HMM
‣ Baum-Welch algorithm: figure out the most likely model given a set
of observations
‣ Context free grammars: Are a much better model for language
because they have hierarchical phrase structure

Starting next time: switching gears again to how people use
data. In particular, we’ll talk about how the informativeness of
data depends on how it was sampled and the structure of the

hypotheses (and whether people are aware of this)

Additional references (not required)

‣ Wikipedia entry on CFGs is also pretty good!
‣ Manning, C., & Schutze, H. (1999). Foundations of statistical natural language
processing. Chapter 11.
‣ Russell, S., & Norvig, P. (1995). Artificial Intelligence: A modern approach. (This one is
first edition, but all editions have good resources on grammars). Chapter 22

HMMs

