Computational Cognitive Science

Lecture 18: Hidden Markov models

States *S* = {*asleep, calm, angry, hungry*} Outputs *O* = {*roar, zzz, snort, grumble*}

State transition matrix A :			Output symbol matrix B			trix B:			
	Asleep	Calm	Angry	Hungry		Roar	Zzz	Snort	Grumble
Asleep	0.5	0.2	0.1	0.2	Asleep	0.0	0.9	0.1	0.0
Calm	0.4	0.3	0.1	0.2	Calm	0.0	0.0	0.8	0.2
Angry	0.1	0.2	0.6	0.1	Angry	1.0	0.0	0.0	0.0
Hungry	0.1	0.1	0.5	0.3	Hungry	0.2	0.0	0.0	0.8

Initial state probabilities II: Asleep Calm Angry Hungry 0.3 0.3 0.2 0.2

Name	Definition	Examples
Adjective	Modifies a noun by describing it	Old, big, scary, hungry
Adverb	Modifies anything other than a noun	Greatly, happily, very
Noun	Person, place, thing, idea, quantity	Bob, chair, lecture, freedom
Verb	Expresses action or state of being	Want, run, think, put, make
Pronoun	Substitutes for a noun where context gives it meaning	Him, her, it, them, we
Auxiliary verb	Helps other verbs, giving additional information	Be, have, shall, will, may, can
Conjunction	Connects parts of a sentence together	And, but, if, or, so
Preposition	Introduces a certain kind of phrase, often a location	In, on, around, with, for
Determiner	Modifies a noun by expressing the reference	A, an, the, that, this, those

Let's recap a bit first...

- For the first weeks in CCS we learned about how people (or models) can learn concepts that don't change, or incorporate an element of time
- Those concepts / models were simple ...

Let's recap a bit first...

- For the first weeks in CCS we learned about how people (or models) can learn concepts that don't change, or incorporate an element of time
- Those concepts / models were simple ...
- ... or more complicated, involving multiple levels of learning

Let's recap a bit first...

- For the first weeks in CCS we learned about how people (or models) can learn concepts that don't change, or incorporate an element of time
- Those concepts / models were simple ...
- •... or more complicated, involving multiple levels of learning
- But they all involved learning in stable, unchanging situations. Lots of real-world learning also involves learning about change, or about sequences of actions

▶ One of the main techniques for sequence learning is using *n*-gram models, which calculate the probability of an item given the previous *n*-1 items. They are used in natural language processing.

🔍 why is Australia so

- 9 why is Australia so Google Search
- why is australia so expensive
- \bigcirc why is australia so hot
- why is australia so great
- why is australia so dry
- \circ why is australia so boring

why is America so

- 9 why is America so Google Search
- why is america so stupid
- ${}^{ extsf{Q}}$ why is america so religious
- why is america so violent
- why is america so rich
- why is america so cheap

- ◆ One of the main techniques for sequence learning is using *n*-gram models, which calculate the probability of an item given the previous *n*-1 items. They are used in natural language processing.
- ▶ They have a big overfitting problem, due partially to Zipf's law

- ▶ One of the main techniques for sequence learning is using *n*-gram models, which calculate the probability of an item given the previous *n*-1 items. They are used in natural language processing.
- They have a big overfitting problem, due partially to Zipf's law
- Solutions to this problem involve smoothing -- taking probability from the attested n-grams and putting it on the unattested ones

- One of the main techniques for sequence learning is using *n*-gram models, which calculate the probability of an item given the previous *n*-1 items. They are used in natural language processing.
- They have a big overfitting problem, due partially to Zipf's law
- Solutions to this problem involve smoothing -- taking probability from the attested n-grams and putting it on the unattested ones
- In simple sequences, people track n-grams of different n, depending on the complexity of the task

unigram: Only two elements to track $P(\Box), P(\circ)$				
bigram: Four elements to track				
$P(\Box \Box), P(\circ \Box), P(\Box \circ), P(\circ \circ)$				
trigram: Eight elements to track				
$P(\Box \Box \Box), P(\circ \Box \Box), P(\Box \circ \Box), P(\circ \Box \circ)$				

- One of the main techniques for sequence learning is using *n*-gram models, which calculate the probability of an item given the previous *n*-1 items. They are used in natural language processing.
- They have a big overfitting problem, due partially to Zipf's law
- Solutions to this problem involve smoothing -- taking probability from the attested n-grams and putting it on the unattested ones
- In simple sequences, people track *n*-grams of different *n*, depending on the complexity of the task
- In word segmentation and action sequences, people can form chunks based on bigram probabilities

dapikutiladoburobidapikupagotutiladopagotudapikuburobi...

Now: More complex sequence learning

- Is there another way to address the overfitting problem, which doesn't lead to too much error in the other directions?
- How well do *n*-gram models explain human language?

Plan for the next two lectures

- Today: introduction to HMMs
 - Limitations of n-grams applied to language
 - Basics of HMMs
- ▶ Tomorrow: finishing HMMs, and more complex structures
 - Calculating the most likely state sequence
 - Finding the best HMM for given data
 - More complex models of language

Plan for the next two lectures

- Today: introduction to HMMs
 - Limitations of n-grams applied to language
 - Basics of HMMs
- ▶ Tomorrow: finishing HMMs, and more complex structures
 - Calculating the most likely state sequence
 - Finding the best HMM for given data
 - More complex models of language

Learning about syntax

- The fundamental issue in syntax is about how sentences are created. The basic unit is not the word but the morpheme.
- A morpheme is the smallest unit in language that conveys meaning

Languages vary in their morpheme-per-word ratio.

Isolating languages have low ratios (close to 1:1) – that is, each word tends to convey one unit of meaning. They tend to have very fixed word order, and to use lots of particles.

Synthetic (or polysynthetic, at the extreme) have high ratios; one word can convey up to an entire sentence of meaning.

A continuum of languages

Highly isolating

		明天	我	的	朋友	會	爲	我	做	-	個	生日	궐
	Chinese	明天	我	的	朋友	슾	为	我	做	_	个	生日	궠
		míngtīan	wŏ	de	péngyou	huì	wèi	wŏ	zuò	yí	ge	shēngri	dà
		tomorrow	I	(subordinating particle)	friend	will	for	T	make	one	(classifier)	birthday	с
	English			"Tomorrow my fr	iends will	mal	ke a	birt	hday c	ake	for me."	1	
		おお	N.	Ō 'oh'	\sim	~	E.		- 14		$\sim c$		
		パーシー Pāshii 'Percy'											
	Japanese	君		kimi 'you' (far	'you' (familiar)								
		監督生に	1	kantokusei ni 'prefect'	'prefect' + に ni になる ni naru means 'to			ns 'to					
		also als	192	natta became	'became' (past tense of なる naru) become (something)'					1			
		なった		beeame	49494 191199								
	Finnich	なった のかい	1	no kai sentence the speal	-final particl ker suspects.	le (qu	estio	n). Tł	nis asks f	or cor	nfirmation of so	omething th	nat

He made the thing that one puts on one's body ugly for her "He ruined her dress"

Highly synthetic

Syntax learning

Syntax is about how morphemes are combined to make a sentence. In English, which is more isolating, this is approximated by the question of how to combine words

Pink pajamas are awesome
 Awesome are pink pajamas
 Pink are awesome pajamas
 Pajamas are awesome pink
 Awesome pink are pajamas

Syntax learning

- Syntax is about how morphemes are combined to make a sentence. In English, which is more isolating, this is approximated by the question of how to combine words
- What are the representations used to generate grammatical sentences? How are they learned?

Using n-grams as models of syntax

Capture the basic idea that words in sentences are produced (probabilistically) based on the previous word(s)

p(the|S) = 1.0p(dog|the) = 0.4

p(boy|the) = 0.4p(happy|the) = 0.2 p(happy|happy) = 0.1p(dog|happy) = 0.5

p(boy|happy) = 0.4p(eats|dog) = 1.0p(eats|boy) = 1.0

Using n-grams as models of syntax

- Capture the basic idea that words in sentences are produced (probabilistically) based on the previous word(s)
- ▶ Is this a good description of language?

 Tracking long-distance dependencies requires an explosion in the size of the grammar

 Tracking long-distance dependencies requires an explosion in the size of the grammar

 Tracking long-distance dependencies requires an explosion in the size of the grammar

Tracking long-distance dependencies requires an explosion in the size of the grammar

- Tracking long-distance dependencies requires an explosion in the size of the grammar
- A long-distance dependency is a relationship between words or word-parts in a sentence that are separated by other words or word-parts. There are LOTS of these in every language.

- Tracking long-distance dependencies requires an explosion in the size of the grammar
- A long-distance dependency is a relationship between words or word-parts in a sentence that are separated by other words or word-parts. There are LOTS of these in every language.
- ▶ If anything, there are more in less isolated langauges.

 Bottom line: with any reasonably sized vocabulary, Markov models (n-gram models) would have to be enormously complex to account for the dependencies between words in human language

- This is fundamentally related to the parameter explosion problem with n-grams of larger n: in reality, most of the probabilities between any random n words is zero, but we have to (potentially) represent all of them with n-grams.
- A model with richer structure might be able to capture the *actual* relationships there are without wasting a lot of representational space.

Instead of describing the order of particular words, describe the order of particular parts of speech

These are things like nouns, verbs, etc.

Different languages vary highly in what parts of speech they have (indeed, there is no agreed-upon classification scheme for what makes different items different parts of speech).

Parts of speech

Name	Definition	Examples
Adjective	Modifies a noun by describing it	Old, big, scary, hungry
Adverb	Modifies anything other than a noun	Greatly, happily, very
Noun	Person, place, thing, idea, quantity	Bob, chair, lecture, freedom
Verb	Expresses action or state of being	Want, run, think, put, make
Pronoun	Substitutes for a noun where context gives it meaning	Him, her, it, them, we
Auxiliary verb	Helps other verbs, giving additional information	Be, have, shall, will, may, can
Conjunction	Connects parts of a sentence together	And, but, if, or, so
Preposition	Introduces a certain kind of phrase, often a location	In, on, around, with, for
Determiner	Modifies a noun by expressing the reference	A, an, the, that, this, those

Open class: easy to add new members; carry a lot of the content

Closed class: hard to add new members; carry a lot of the grammar

Parts of speech

There is a lot of evidence that we actually represent and use parts of speech

Open vs closed class are treated differently

 They are disrupted differently in different kinds of aphasia (brain damage)

Broca's

Lower Falls... Maine... Paper. Four hundred tons a day! And ah... sulphur machines, and ah... wood... Two weeks and eight hours. Eight hours ... no! Twelve hours, fifteen hours... workin ... workin ... workin! Yes, and ... ah... sulphur.

Wernicke's

Boy, I'm sweating, I'm awful nervous, you know, once in a while I get caught up, I can't mention the tarripoi, a month ago, quite a little, I've done a lot well, I impose a lot, while, on the other hand, you know what I mean, I have to run around, look it over, trebbin and all that sort of stuff.

Open vs closed class are treated differently

- They are disrupted differently in different kinds of aphasia (brain damage)
- Children's first words are almost always open class

Open vs closed class are treated differently

- They are disrupted differently in different kinds of aphasia (brain damage)
- Children's first words are almost always open class
- Closed-class words are the ones that second-language learners have the most difficulty with

Parts of speech are psychologically real

Children learn something about them quite early

For instance, 14-month-olds generalise differently depending on if something is a noun or an adjective

"This is not a blicket"

Find a blicket

Find the blickish one

"This is not blickish"

Parts of speech are psychologically real

- Children learn something about them quite early
- When people make production errors they often involve substituting words (but the same part of speech) for each other -- rarely words across parts of speech

Socrates died from an overdose of wedlock
Columbus was a great navigator who discovered America while cursing about the Atlantic
The couple took the vowels of marriage
We had pot luck supper in our church, then prayer and medication followed

A grammar over parts of speech

Instead of this...

A grammar over parts of speech

you have this!

(0.5) verb → eats (0.5) verb → runs (0.3) pro → he (0.3) pro → she (0.4) pro → it (0.7) det → the (0.3) det → a (0.4) noun → boy (0.4) noun → dog (0.2) noun → tiger (1.0) adj → happy

This is a Hidden Markov Model (HMM)

Plan for the next two lectures

Today: introduction to HMMs

- Limitations of n-grams applied to language
- Basics of HMMs
- ▶ Tomorrow: finishing HMMs, and more complex structures
 - Calculating the most likely state sequence
 - Finding the best HMM for given data
 - More complex models of language

HMMs: The basics

A Markov model looks like this:

variables X_t = word at time tstates $S = \{the, old, man, was, ...\}$

A Hidden Markov model: same idea, but with hidden states

 X_t = part of speech at time tstates $S = \{det, adj, n, aux, ...\}$

 Y_t = word at time *t* observations $O = \{the, old, man, ...\}$

HMMs: The basics

HMMs: The basics

Hidden states Set of N states $S = \{s_1, ..., s_N\}$ Observations Set of M output symbols $O = \{o_1, ..., o_M\} \leftarrow$ Initial state probabilities $\Pi = \{\pi_i\}, i, j = 1, \dots, N$ State transition probabilities $A = \{a_{ij}\}, i, j = 1, \dots, N$ Symbol emission probabilities $B = \{b_{ik}\}, i = 1, \dots, N; k = 1, \dots, M$ State sequence $X = (x_1, \ldots, x_T), x_t \in S^{\wedge}$ Output sequence $Y = (y_1, \ldots, y_T), y_t \in O$ Probability of transitioning from state s_i to state s_i Actual series of states generated Probability of emitting Actual observations symbol o_k from state s_i

People use HMMs for all sorts of things (not just language)

Language: Approximations to grammars Speech recognition Handwriting recognition Part-of-speech tagging

Other: Music

Mutation rates in biology Protein structure / folding Financial system analysis You are a mighty warrior named Mitee. You have been sent on a quest to kill a dragon in its cave. You want to catch it while it is asleep or not paying attention, but since it is in a cave you can't observe that directly. Instead, you can only hear the sounds it makes. How do you decide when to enter the cave?

A non-linguistic example

States *S* = {*asleep, calm, angry, hungry*} Outputs *O* = {*roar, zzz, snort, grumble*}

State transition matrix *A*:

	Asleep	Calm	Angry	Hungry
Asleep	0.5	0.2	0.1	0.2
Calm	0.4	0.3	0.1	0.2
Angry	0.1	0.2	0.6	0.1
Hungry	0.1	0.1	0.5	0.3

	Roar	Zzz	Snort	Grumble
Asleep	0.0	0.9	0.1	0.0
Calm	0.0	0.0	0.8	0.2
Angry	1.0	0.0	0.0	0.0
Hungry	0.2	0.0	0.0	0.8

Initial state probabilities Π :

Asleep	Calm	Angry	Hungry
0.3	0.3	0.2	0.2

- \blacktriangleright Pick an initial state proportional to the initial state probabilities \varPi
- At each time t:
 - Generate observation given transition matrix *B* from current state
 - Generate state for the next time based on transition matrix *A* between states

Initial state probabilities Π :

Asleep	Calm	Angry	Hungry
0.3	0.3	0.2	0.2

State transition matrix A:

	Asleep	Calm	Angry	Hungry
Asleep	0.5	0.2	0.1	0.2
Calm	0.4	0.3	0.1	0.2
Angry	0.1	0.2	0.6	0.1
Hungry	0.1	0.1	0.5	0.3

	Roar	Zzz	Snort	Grumble
Asleep	0.0	0.9	0.1	0.0
Calm	0.0	0.0	0.8	0.2
Angry	1.0	0.0	0.0	0.0
Hungry	0.2	0.0	0.0	0.8

\blacktriangleright Pick an initial state proportional to the initial state probabilities \varPi

At each time t:

- Generate observation given transition matrix *B* from current state
- Generate state for the next time based on transition matrix *A* between states

Initial state probabilities Π :

Asleep	Calm	Angry	Hungry
0.3	0.3	0.2	0.2

State transition matrix A:

	Asleep	Calm	Angry	Hungry
Asleep	0.5	0.2	0.1	0.2
Calm	0.4	0.3	0.1	0.2
Angry	0.1	0.2	0.6	0.1
Hungry	0.1	0.1	0.5	0.3

	Roar	Zzz	Snort	Grumble
Asleep	0.0	0.9	0.1	0.0
Calm	0.0	0.0	0.8	0.2
Angry	1.0	0.0	0.0	0.0
Hungry	0.2	0.0	0.0	0.8

ZZZ

 \blacktriangleright Pick an initial state proportional to the initial state probabilities \varPi

At each time t:

- Generate observation given transition matrix *B* from current state
- Generate state for the next time based on transition matrix *A* between states

Initial state probabilities Π :

Asleep	Calm	Angry	Hungry
0.3	0.3	0.2	0.2

State transition matrix A:

	Asleep	Calm	Angry	Hungry
Asleep	0.5	0.2	0.1	0.2
Calm	0.4	0.3	0.1	0.2
Angry	0.1	0.2	0.6	0.1
Hungry	0.1	0.1	0.5	0.3

	Roar	Zzz	Snort	Grumble
Asleep	0.0	0.9	0.1	0.0
Calm	0.0	0.0	0.8	0.2
Angry	1.0	0.0	0.0	0.0
Hungry	0.2	0.0	0.0	0.8

ZZZ

- Pick an initial state proportional to the initial state probabilities Π
- At each time t:
 - Generate observation given transition matrix *B* from current state
 - Generate state for the next time based on transition matrix A between states

Initial state probabilities Π :

Asleep	Calm	Angry	Hungry
0.3	0.3	0.2	0.2

State transition matrix A:

	Asleep	Calm	Angry	Hungry
Asleep	0.5	0.2	0.1	0.2
Calm	0.4	0.3	0.1	0.2
Angry	0.1	0.2	0.6	0.1
Hungry	0.1	0.1	0.5	0.3

	Roar	Zzz	Snort	Grumble
Asleep	0.0	0.9	0.1	0.0
Calm	0.0	0.0	0.8	0.2
Angry	1.0	0.0	0.0	0.0
Hungry	0.2	0.0	0.0	0.8

zzz grumble

Pick an initial state proportional to the initial state probabilities Π

At each time t:

- Generate observation given transition matrix *B* from current state
- Generate state for the next time based on transition matrix *A* between states

Initial state probabilities Π :

Asleep	Calm	Angry	Hungry
0.3	0.3	0.2	0.2

State transition matrix A:

	Asleep	Calm	Angry	Hungry
Asleep	0.5	0.2	0.1	0.2
Calm	0.4	0.3	0.1	0.2
Angry	0.1	0.2	0.6	0.1
Hungry	0.1	0.1	0.5	0.3

	Roar	Zzz	Snort	Grumble
Asleep	0.0	0.9	0.1	0.0
Calm	0.0	0.0	0.8	0.2
Angry	1.0	0.0	0.0	0.0
Hungry	0.2	0.0	0.0	0.8

A linguistic example

States $S = \{noun, verb, det, pro, adj, \{*\}\}$ symbol Outputs $O = \{boy, dog, tiger, eats, runs, the, a, it, she, he, happy\}$

State transition matrix *A*:

Output	symbol	matrix	<i>B</i> :
--------	--------	--------	------------

End state

	Noun	Verb	Det	Pro	Adj	*
Noun	0.0	1.0	0.0	0.0	0.0	0.0
Verb	0.0	0.0	0.0	0.0	0.0	1.0
Det	0.8	0.0	0.0	0.0	0.2	0.0
Pro	0.0	1.0	0.0	0.0	0.0	0.0
Adj	0.9	0.0	0.0	0.0	0.1	0.0

 $\rightarrow \text{ noun } \xrightarrow{1.0} \text{ verb } \xrightarrow{1.0} \text{ E}$

Initial state probabilities Π :

Noun	Verb	Det	Pro	Adj	*
0.0	0.0	0.3	0.7	0.0	0.0

\blacktriangleright Pick an initial state proportional to the initial state probabilities \varPi

- At each time t:
 - Generate observation given transition matrix *B* from current state
 - Generate state for the next time based on transition matrix *A* between states

Initial state probabilities Π :

Noun	Verb	Det	Pro	Adj	*
0.0	0.0	0.3	0.7	0.0	0.0

State transition matrix A:

	Noun	Verb	Det	Pro	Adj	*
Noun	0.0	1.0	0.0	0.0	0.0	0.0
Verb	0.0	0.0	0.0	0.0	0.0	1.0
Det	0.8	0.0	0.0	0.0	0.2	0.0
Pro	0.0	1.0	0.0	0.0	0.0	0.0
Adj	0.9	0.0	0.0	0.0	0.1	0.0

	He	Dog	Tiger	Eats	Runs
Noun	0.0	0.4	0.2	0.0	0.0
Verb	0.0	0.0	0.0	0.5	0.5
Det	0.0	0.0	0.0	0.0	0.0
Pro	0.3	0.0	0.0	0.0	0.0
Adj	0.0	0.0	0.0	0.0	

\blacktriangleright Pick an initial state proportional to the initial state probabilities \varPi

At each time t:

- Generate observation given transition matrix *B* from current state
- Generate state for the next time based on transition matrix *A* between states

Initial state probabilities Π :

Noun	Verb	Det	Pro	Adj	*
0.0	0.0	0.3	0.7	0.0	0.0

State transition matrix A:

	Noun	Verb	Det	Pro	Adj	*
Noun	0.0	1.0	0.0	0.0	0.0	0.0
Verb	0.0	0.0	0.0	0.0	0.0	1.0
Det	0.8	0.0	0.0	0.0	0.2	0.0
Pro	0.0	1.0	0.0	0.0	0.0	0.0
Adj	0.9	0.0	0.0	0.0	0.1	0.0

	He	Dog	Tiger	Eats	Runs
Noun	0.0	0.4	0.2	0.0	0.0
Verb	0.0	0.0	0.0	0.5	0.5
Det	0.0	0.0	0.0	0.0	0.0
Pro	0.3	0.0	0.0	0.0	0.0
Adj	0.0	0.0	0.0	0.0	

he

• Pick an initial state proportional to the initial state probabilities Π

At each time t:

- Generate observation given transition matrix *B* from current state
- Generate state for the next time based on transition matrix *A* between states

Initial state probabilities Π :

Noun	Verb	Det	Pro	Adj	*
0.0	0.0	0.3	0.7	0.0	0.0

State transition matrix A:

	Noun	Verb	Det	Pro	Adj	*
Noun	0.0	1.0	0.0	0.0	0.0	0.0
Verb	0.0	0.0	0.0	0.0	0.0	1.0
Det	0.8	0.0	0.0	0.0	0.2	0.0
Pro	0.0	1.0	0.0	0.0	0.0	0.0
Adj	0.9	0.0	0.0	0.0	0.1	0.0

	He	Dog	Tiger	Eats	Runs
Noun	0.0	0.4	0.2	0.0	0.0
Verb	0.0	0.0	0.0	0.5	0.5
Det	0.0	0.0	0.0	0.0	0.0
Pro	0.3	0.0	0.0	0.0	0.0
Adj	0.0	0.0	0.0	0.0	

he

- Pick an initial state proportional to the initial state probabilities Π
- At each time t:
 - Generate observation given transition matrix *B* from current state
 - Generate state for the next time based on transition matrix A between states

Initial state probabilities Π :

Noun	Verb	Det	Pro	Adj	*
0.0	0.0	0.3	0.7	0.0	0.0

State transition matrix A:

	Noun	Verb	Det	Pro	Adj	*
Noun	0.0	1.0	0.0	0.0	0.0	0.0
Verb	0.0	0.0	0.0	0.0	0.0	1.0
Det	0.8	0.0	0.0	0.0	0.2	0.0
Pro	0.0	1.0	0.0	0.0	0.0	0.0
Adj	0.9	0.0	0.0	0.0	0.1	0.0

	He	Dog	Tiger	Eats	Runs
Noun	0.0	0.4	0.2	0.0	0.0
Verb	0.0	0.0	0.0	0.5	0.5
Det	0.0	0.0	0.0	0.0	0.0
Pro	0.3	0.0	0.0	0.0	0.0
Adj	0.0	0.0	0.0	0.0	

he runs

Pick an initial state proportional to the initial state probabilities Π

At each time t:

- Generate observation given transition matrix *B* from current state
- Generate state for the next time based on transition matrix *A* between states

Initial state probabilities Π :

Noun	Verb	Det	Pro	Adj	*
0.0	0.0	0.3	0.7	0.0	0.0

State transition matrix A:

	Noun	Verb	Det	Pro	Adj	*
Noun	0.0	1.0	0.0	0.0	0.0	0.0
Verb	0.0	0.0	0.0	0.0	0.0	1.0
Det	0.8	0.0	0.0	0.0	0.2	0.0
Pro	0.0	1.0	0.0	0.0	0.0	0.0
Adj	0.9	0.0	0.0	0.0	0.1	0.0

	He	Dog	Tiger	Eats	Runs
Noun	0.0	0.4	0.2	0.0	0.0
Verb	0.0	0.0	0.0	0.5	0.5
Det	0.0	0.0	0.0	0.0	0.0
Pro	0.3	0.0	0.0	0.0	0.0
Adj	0.0	0.0	0.0	0.0	

he runs

- \blacktriangleright Pick an initial state proportional to the initial state probabilities \varPi
- At each time t:
 - Generate observation given transition matrix *B* from current state
 - Generate state for the next time based on transition matrix A between states

Initial state probabilities Π :

Noun	Verb	Det	Pro	Adj	*
0.0	0.0	0.3	0.7	0.0	0.0

State transition matrix A:

	Noun	Verb	Det	Pro	Adj	*
Noun	0.0	1.0	0.0	0.0	0.0	0.0
Verb	0.0	0.0	0.0	0.0	0.0	1.0
Det	0.8	0.0	0.0	0.0	0.2	0.0
Pro	0.0	1.0	0.0	0.0	0.0	0.0
Adj	0.9	0.0	0.0	0.0	0.1	0.0

	He	Dog	Tiger	Eats	Runs
Noun	0.0	0.4	0.2	0.0	0.0
Verb	0.0	0.0	0.0	0.5	0.5
Det	0.0	0.0	0.0	0.0	0.0
Pro	0.3	0.0	0.0	0.0	0.0
Adj	0.0	0.0	0.0	0.0	

Generating data is easy: the real power comes from assuming that some data was generated by an HMM, and inferring the probabilities and state sequences

• Given a model $M = (A, B, \Pi)$, how do we efficiently compute how likely a certain observation is?

Example: simple language How likely are you to see he eats?

Example: Mitee the warrior How likely are you to see zzz snort?

- Given a model $M = (A, B, \Pi)$, how do we efficiently compute how likely a certain observation is?
- Given a sequence of observations Y and a model M, how do we infer the state sequence that best explains the observations?

Example: Mitee the warrior Makes the observations on the right

What were the most likely moods of the dragon at each point?

zzz snort zzz zzz zzz snort snort grumble roar grumble

- Given a model $M = (A, B, \Pi)$, how do we efficiently compute how likely a certain observation is?
- Given a sequence of observations Y and a model M, how do we infer the state sequence that best explains the observations?

Example: Language You hear the following sentence

they run to the park

What were the parts of speech at each point?

- Given a model $M = (A, B, \Pi)$, how do we efficiently compute how likely a certain observation is?
- Given a sequence of observations Y and a model M, how do we infer the state sequence that best explains the observations?
- Given an observation sequence Y and a space of possible models found by varying the model parameters $M = (A, B, \Pi)$, how do we find the model that best explains the observed data?

Example: language

This time, you don't know which words correspond to which parts of speech: you have to infer the transition probabilities A, B, and Π

- Given a model M = (A,B,Π), how do we efficiently compute how likely a certain observation is?
- Given a sequence of observations Y and a model M, how do we infer the state sequence that best explains the observations?
- Given an observation sequence Y and a space of possible models found by varying the model parameters M = (A,B,Π), how do we find the model that best explains the observed data?

 Because of the problem of long-distance dependencies, Markov models are not good models of language: they need to be too large to capture its regularities

Summary

- Because of the problem of long-distance dependencies, Markov models are not good models of language: they need to be too large to capture its regularities
- Grammars that incorporate parts of speech can be useful for greatly minimising the size of the grammar required

Summary

- Because of the problem of long-distance dependencies, Markov models are not good models of language: they need to be too large to capture its regularities
- Grammars that incorporate parts of speech can be useful for greatly minimising the size of the grammar required
- Hidden Markov models, which involve hidden states that generate observations, can capture parts of speech

Summary

- Because of the problem of long-distance dependencies, Markov models are not good models of language: they need to be too large to capture its regularities
- Grammars that incorporate parts of speech can be useful for greatly minimising the size of the grammar required
- Hidden Markov models, which involve hidden states that generate observations, can capture parts of speech
- We can use such models to generate sequences of observations in both linguistic and non-linguistic contexts

Additional references (not required)

HMMs

▶ Wikipedia entry on HMMs is pretty good!

Manning, C., & Schutze, H. (1999). Foundations of statistical natural language processing. Chapter 9: Markov models.

▶ Russell, S., & Norvig, P. (1995). Artificial Intelligence: A modern approach. (This one is first edition, but all editions have good resources on HMMs).

Parts of speech

Booth, A., & Waxman, S. (2003). Mapping words to the world in infancy: Infants' expectations for count nouns and adjectives. *Journal of Cognition and Development 4*: 357-381.