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Lecture 8: Unsupervised 
classification



‣Unsupervised classification
- Case study: phoneme learning in language

‣A first try: k-means clustering
- Limitations and an extension

‣Next try: Mixture of Gaussians
- EM model for calculating

‣Next: Semi-supervised classification

Lecture outline

both fairly analogous 
to prototype models
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Where we stand so far

‣So far we’ve been introduced to the problem of classification

observation x

label ℓ(x)

predict the label of 
other observations y
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probability distributions
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psychological theory
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Where we stand so far

‣So far we’ve been introduced to the problem of classification
‣We’ve seen some possible models... and how they link to 

psychological theory
‣But in all of these examples we’ve assumed that everything is 

labeled!
Indeed, many of the 

models require it!



A problem: This doesn’t describe real life

‣Most of the time things are at most semi-supervised; only some 
things are labelled

cat

cat
cat



A problem: This doesn’t describe real life

‣And some things are never labelled (by definition!)
‣ For instance: sound categories in a language

Phonemes: units of sound (consonants or 
vowels) in a language. Shortest segment of 

speech that distinguishes two words

b h t

bed
head

sh

showertower



Unsupervised classification: Phonemes
Vowels: sounds where the air is not blocked, 

classified by the shape of the mouth



Unsupervised classification: Phonemes
Phoneme categories differ across languages

/e/ - /eɪ/
bet - bait

/ɪ/ - /ɪː/
bit - beat
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Unsupervised classification: Phonemes
Phoneme categorisation (in any language) is very difficult!

High variability 
due to:

Speaker 
differences

Intonation

Context 
(surrounding 
phonemes)

Vowel space



Unsupervised classification: Phonemes
Phoneme categorisation (in any language) is very difficult!

High variability 
due to:

Speaker 
differences

Intonation

Context 
(surrounding 
phonemes)

Vowel space

Plus it is totally 
unsupervised!



Unsupervised classification: Phonemes
Phoneme categorisation (in any language) is very difficult!

Main question: How do people (children) learn the 
phoneme categories appropriate to their language?

Possible answer: They use distributional information 
(info about how the sounds are distributed)... which 

you can get just by listening (plus a reasonable 
mechanism for unsupervised learning)

Do people actually 
learn this way?

What algorithm 
might do this?



Do people actually learn distributionally?
Yes, it seems they do. 

Experimental test (infants): Present them with different 
distributions of sounds...

Unimodal: Should 
learn one phoneme

Bimodal: Should learn 
two phonemes



Do people actually learn distributionally?
Yes, it seems they do. 

Experimental test (infants): Then, after they’ve heard that 
distribution, have them listen to one sound over and over until 

they get bored (habituated)

A

Habituation: 
play “A” 
repeatedly
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Do people actually learn distributionally?
Yes, it seems they do. 

Experimental test (infants): Test on another sound. If they think it 
is one underlying category, they should remain bored. If they 

think it is two, they should get interested again.

A B

Test: 
play “B” 
repeatedly

at
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Habituation: 
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Do people actually learn distributionally?
Yes, it seems they do. 

Experimental result (infants): They do get interested again in the 
bimodal condition, but not the unimodal. So they must be 

learning the underlying distribution



Do people actually learn distributionally?
Yes, it seems they do. 

Experimental result (infants): They do get interested again in the 
bimodal condition, but not the unimodal. So they must be 

learning the underlying distribution

How?
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The computational problem

F1 (MHz)

First 10 phonemes from Hillenbrand et al (1995), who recorded people saying vowel phonemes.
load(‘phonemedata.RData’)
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The computational problem

First 10 phonemes from Hillenbrand et al (1995), who recorded people saying vowel phonemes.

IY

IH
EI

AE
EH

ER

OO
OA AW

AH

load(‘phonemedata.RData’)
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K-means clustering

Given a guess about how many clusters k there are, initialise 
the clusters randomly and then assign points to clusters in a 
way to minimise their distance from the centre of the clusters

load(‘sampledemo.RData’)
kmeanscluster(d,4)



K-means clustering

Assumes that we can define a metric that measures the 
distance between two points in the space

y (4,8)

z (6,2)

For now, we’ll use the following 
metric for any two points y and z:



Initialization:
Set each mean to a random value*
Initialise “previous” responsibility matrix rprev
Set up initial current responsibility matrix rcurr

While rprev != rcurr

     Assignment step:
   Assign each datapoint to the closest mean

   Update step:
   Recalculate the means

End

K-means clustering: Pseudocode

* To ensure that each cluster has at least one datapoint, set this to the value of a random datapoint

A “responsibility” matrix captures the 
assignment of datapoints to clusters

m(k) is the mean of the kth cluster



Example 1: Easy dataset

load(‘fakeeasydata.RData’)
kmeanscluster(d,4)



How well does it do on the phoneme data?

Note that the 
clusters 
appear 

elongated 
because the 
axes are on 

different 
scales.

1.2

3.0

1.2

3.0

load(‘phonemedata.RData’)
kmeanscluster(d,4)



How well does it do on the phoneme data?

3.5

3.5

3.5

3.5

3.5

3.5

When on 
equal scales, 

the actual 
phonemes are 
elongated but 

the ones 
learned by k-
means are not

load(‘phonemedata.RData’)
kmeanscluster(d,4)



‣Good things
- Guaranteed to converge to a local maximum
- Fast

‣Bad things
- Convergence is not to global maximum, so final result is very 

dependent on starting position
- Particularly bad for certain kinds of datasets

Qualitative analysis of k-means



Bad dataset #1: Points overlap

load(‘baddataset1.RData’)
kmeanscluster(d,4)



Bad dataset #2: Differently sized clusters

load(‘baddataset2.RData’)
kmeanscluster(d,2)



Bad dataset #3: Elongated clusters

load(‘baddataset3.RData’)
kmeanscluster(d,2)

(like the phoneme data)



Another general problem

Category 
assignments 

are hard. 
Points near the 
border should 
arguably affect 
the means of 

all nearby 
clusters.



Initialization:
Set each mean to a random value*
Initialise “previous” responsibility matrix rprev
Set up initial current responsibility matrix rcurr

While rprev != rcurr

     Assignment step:
   Each datapoint is assigned to each mean probabilistically, 

 proportional to its distance from the mean

   Update step:
   Recalculate the means

End

Soft K-means clustering: Pseudocode

* To ensure that each cluster has at least one datapoint, set this to the value of a random datapoint

Before: “responsibility” matrix captures 
the assignment of datapoints to clusters

m(k) is the mean of the kth cluster



Initialization:
Set each mean to a random value*
Initialise “previous” responsibility matrix rprev
Set up initial current responsibility matrix rcurr

While rprev != rcurr

     Assignment step:
   Each datapoint is assigned to each mean probabilistically, 

 proportional to its distance from the mean

   Update step:
   Recalculate the means

End

Soft K-means clustering: Pseudocode

* To ensure that each cluster has at least one datapoint, set this to the value of a random datapoint

Now: it captures a “soft” assignment of 
datapoints to clusters

m(k) is the mean of the kth cluster
β governs the “stiffness” of assignments



Soft K-means often performs sensibly

β = 3

load(‘softkmeansdemo.RData’)
softkmeanscluster(d,3,3)



Soft K-means often performs sensibly

β = 3

As β approaches infinity, it turns into hard k-means clustering

β = 1

β = 10 β = 50β = 6



... but it still has many of the same problems
Can’t handle clusters of different sizes

β = 3β = 1

β = 10 β = 50

load(‘baddataset2.RData’)
softkmeanscluster(d,2,beta)



... but it still has many of the same problems
Can’t handle elongated clusters

β = 3β = 1

β = 10 β = 50

load(‘baddataset3.RData’)
softkmeanscluster(d,2,beta)



What’s going on here?

Take a step back, first. How are data (like phonemes) 
probably generated?

Some sort of 
underlying 

process which 
imposes a 
distribution 
over data 

points 



What’s going on here?

k-means clustering is making some implicit 
assumptions about the nature of that process

Distance 
metric is the 

same in every 
direction and 

for every 
cluster



What’s going on here?

As a result, k-means assumes that all clusters are the 
same size as well as symmetric (circular)

Both of these are 
impossible to do well



The fix: change these assumptions

As a result, k-means assumes that all clusters are the 
same size as well as symmetric (circular)

The result is an algorithm called
Mixture of Gaussians



‣Unsupervised classification
- Case study: phoneme learning in language

‣A first try: k-means clustering
- Limitations and an extension

➡ Next try: Mixture of Gaussians
- EM model for calculating

‣Next: Semi-supervised classification
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Mixture of Gaussians

Assumes that the data are generated by Gaussians 
(normal distributions), possibly with different 

variances in different directions

The algorithm for 
calculating the 
best Gaussians 
is called the EM 
algorithm after 
the two steps 

involved 



Mixture of Gaussians with EM

The Expectation step (or E-step) is a direct analogue 
of the assignment step previously: each datapoint is 

assigned probabilistically to each cluster

Responsibilities are:

Equation for a Gaussian - 
you’ve seen this in Dan’s recent lectures!

(so this is exactly the same as calculating the likelihood of that point 
under the Gaussian distribution with parameters w, m, and σ)



Mixture of Gaussians with EM

The Expectation step (or E-step) is a direct analogue 
of the assignment step previously: each datapoint is 

assigned probabilistically to each cluster

Responsibilities are:

weight for 
cluster k

standard 
deviation 

of cluster k
Mean along 
dimension i 
for cluster k

Point n at 
dimension i

Total number of 
dimensions i



Mixture of Gaussians with EM

The Maximisation step (or M-step) is an analogue of 
the update step previously, but in addition to the mean 
we need to update the weights and standard deviation

Means:

this is the same as the 
update step for soft k-
means: the mean of all 
points weighted by the 

proportion to which they 
belong in the cluster

Variance:

This is the average 
variance of the cluster 

where points are 
weighted by the 

proportion of their 
likelihood taken care of 

by that cluster

Weights:

This is the sum of 
all responsibilities 
in that cluster (so 
clusters with more 
points have more 

weight)



Mixture of Gaussians: Pseudocode
Initialization:
Set each mean, standard deviation, and weight to a random value*
Initialise “previous” responsibility matrix rprev
Set up initial current responsibility matrix rcurr

While rprev != rcurr

     Assignment step (E-step):
   Calculate the likelihood of each datapoint in each cluster, 
   assuming the cluster is a Gaussian with the current mean, 
   standard deviation, and weight

   Update step:
   Recalculate the means

 Recalculate the standard deviations
 Recalculate the weights

End

Corresponds to “version 3” algorithm on page 304 of MacKay (see readings)



How does MoG do?

load(‘softkmeansdemo.RData’)
mixtureofgaussians(d,3)



How does MoG do?

load(‘baddataset2.RData’)
mixtureofgaussians(d,2)



How does MoG do?

load(‘baddataset3.RData’)
mixtureofgaussians(d,2)



How does MoG do on our phoneme data?

load(‘phonemedata.RData’)
mixtureofgaussians(d,10)

This error occurs because it is 
getting NaNs for the likelihood

In trying to account for the two points at the 
bottom, it the variance in the y dimension to 
zero, resulting in infinite likelihood



How does MoG do on our phoneme data?
kludge: just set it so the minimum variance can’t go 

below some small constant (e.g., 0.001)



Good things about Mixture of Gaussians

‣As with k-means, convergence to a local maximum is 
fast and guaranteed
‣Performance is considerably better than k-means: can fit 

asymmetrc clusters of unequal variance
‣Can handle soft assignment
‣ Interpretable probabilistically, in terms of maximising the 

likelihood of the dataset assuming the clusters are 
Gaussian



Bad things about Mixture of Gaussians

‣As with k-means, not guaranteed to converge to a global 
maximum; still sensitive to initial conditions
- You can especially see this if you set the initial variances too 

low or too high
‣As with k-means, you have to tell it how many clusters 

there are
‣Occasionally shows pathological behaviour in which (a) 

one cluster has infinitely small variance, or (b) all means 
are the same and all points shared among all clusters
- Making it properly Bayesian by instead setting a prior on the 

variance can help here, and is more principled



A full model of phonetic learning

‣MoG is vastly better, but still not great for a dataset as 
complicated as the phoneme data
‣Existing models build on MoG in three ways:

- Solving the local maximum problem: integrate over all 
possible solutions, don’t just find a single best one given your 
starting point like EM

- Solving the zero-variance problem: Set a prior over the 
means, variances, and weights

- Learn how many categories would be appropriate through a 
special kind of prior on the # of categories; Dan will be talking 
about this in the next lecture!



Summary

‣Although many things in life are supervised or semi-supervised, 
a number are completely unsupervised
‣A very simple model of unsupervised clustering, k-means, is 

fast and okay but has several problems
- Local maxima; sensitivity to starting conditions; can’t handle if the 

categories are not equal-sized and symmetric; have to tell it how 
many clusters; hard assignments

- Adding soft assignments helps but doesn’t solve most problems

‣Mixture of Gaussians with EM, which views the problem as 
finding the underlying Gaussian distributions, solves many of 
these problems, but not all
- Local maxima; sensitivity to starting conditions; have to tell it how 

many clusters



Additional references (not required)

k-means clustering and mixture of Gaussians

‣ MacKay, D. (2003). Information theory, inference, and learning 
algorithms. Chapters 20 and 22.

Introduction to language / phonemes

‣ Kuhl, P. (2004). Early language acquisition: Cracking the speech 
code. Nature Reviews Neuroscience 5: 831-843.
‣ Chater, N., and Manning, C. (2006). Probabilistic models of 
language processing and acquisition. Trends in Cognitive Science 
10(7): 335-344.


