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The lotto problem
(“this is computer science and not just
maths, right?”’)




Bizarro lotto inference game

® The Bizarro company runs a lotto.

Each day they announce a winning number; x
The winning number is an integer from 1 to 100

But, during any given week, the winning number is
chosen at random from an unknown range between [

and u.
In other words:1 <l <x<u <100

At the end of the week, the numbers [ and u are
revealed, and new value chosen.



Bizarro lotto inference game

® An example...

®  On Sunday, the company chooses [ = 15, u = 39.
® But they don'’t tell these numbers to anyone.
® They then run the lotto during the week...

Mon: 3l,

Tue: 15,

Wed: 37,

Thu: 20,

Fri: 20

®  On Saturday, the company reveals [ and u



The bookie’s problem

® A friend of mine wants to offer side bets.

® Anyone can select a number Yy on any day of the week,
and if y is between [ and u, they win

® |f he wants all possible bets to be fair, what odds
should she offer for y?

® (Can we build 2 model to solve this?



What does the bookie need to know!?

® lLet X = (xy ..., xx) be the lotto data for k days
® That is xi is the winning number on day 1
o |Let C=(l, u)be the true range

® Our bookie needs to know the probability that y
is in C, given that we’ve seen data X so far,

P(y € C|X)



Sample space and hypothesis space

® Sample space

® T[he lotto humbers are between | and 100

® Sample space X is the set (1,2, 3,..., 100).

® Hypothesis space

Each hypothesis h specifies a possible choice of
integers [ and u,such that 1 < [ < u <100

So H is the set of all such choices

There’s 5050 of these! Time for some coding...



Specify the prior distribution

® The company chooses the true values at random,
so P(h) is uniform across the 5050 hypotheses

1 1

P(h) x — =
() o T = 5050




The likelihood

® FEach winning number x is selected uniformly at
random from the range ([, u)

® Notation:
® lLet |h|=u—1[+1be the size of h

¢ and € h meansl<x<u

® |ikelihood for a single observation:

1
P(alh) ={ M

0 otherwise



The likelihood for multiple observations

® The lotto numbers are independently drawn from
the range between [ and u

e |[f his the correct hypothesis about the range, then
we can just multiply the individual probabilities...

P(X|h)

P(zy,xo,...zk|h)

k
HP(%‘W



The likelihood for multiple observations

® |t's important to understand what's happening
here

® Here's a graphical illustration:

@ All of the winning numbers
(x) are "generated" from
)// the true hypothesis h



The likelihood for multiple observations

® |t's important to understand what's happening
here

® Here's a graphical illustration:

Everything you need to

/ know about the probability

of x| value is captured by

@ @ h ...i.e., if you know h, then
x2 tells you nothing new

about x|



The likelihood for multiple observations

® |t's important to understand what's happening
here

® Here's a graphical illustration:

’// We say that x2 and x| are
@ @ conditionally independent given h



The likelihood for multiple observations

® |t's important to understand what's happening
here

® Here's a graphical illustration:

Mathematically, this means that the
likelihood function factorises as
@ @ follows:
P(x1,x2 | h) =P(x1 | h) P(x2 | h)



The likelihood for multiple observations

® |t's important to understand what's happening
here

® Here's a graphical illustration:

/ In our example, the multiplication is
really, really simple:
@ @ P(x1,x2 | h) =P(x1 | h) P(x2 | h)

=(1/[h])(1/[h])



We can now solve our inference problem

(h)

(Xh)
> nen P(X|W)P(R)
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posterior after one
observation at /5

Upper Bound
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Upper Bound
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posterior after two
observations at 75 & 85
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posterior.after one posterior after two
observation at /5 observations at 75 & 85



Answering the bookie’s question

® To calculate the probability that y falls within the
true range C

P(y € C|X)= )Y P(ye C|h)P(h|X)
heH

® where P(y € Clh) equals 1 if y is within h, and
equals O if it doesn’t



Outcomes so far: 75

_ _ _ _ _ _
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Outcomes so far: 75, 85
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Demonstration: lotto.R

FYI: the lotto problem is formally equivalent to an interestin
P Y €4 g
psychological problem that Amy will talk about later)



Winning at battleships
(“Ockham’s razor”)



Ockham’s razor

® What is it!
® “Do not multiply entities beyond necessity”

® The “simplest” explanation that “fits the data” is most
likely to be correct

® How do we formalise it?
® We need to understand what we mean by simplicity

® And we need some rule that favours it

® Formalising simplicity is hard!

® ['ll show you the easy way, and (maybe) talk in passing
about the hard way...



Generalised battleships!

One small ship



Generalised battleships!

One large ship



Generalised battleships!

||

]

Three small ships



On each turn, you get to see a
randomly sampled “hit”




consistent with very few  consistent with many
possible observations possible observations
(12 squares covered) (121 squares covered)

[]

consists of few
distinct “entities”

(1 ship)

consists of many
distinct “entities” [l in
(4 ships) £




Which of the following is the “simplest
explanation” that is “consistent with
data?”



| entity, 60 squares covered




2 entities, 30 squares covered




4 entities, 22 squares covered




Simplicity: the Bayesian view

Choose a prior to favour simplicity:
prior probability decreases as a
function of the number of entities

Prior probability is Prior probability is
“proportional to” | “proportional to” 1/3

L]

L1 L




preferred by the prior

- 114 o [ 4




Fitting the data: the Bayesian view

L The likelihood
Plalh) = ™ if x € h function assigns
0 otherwise probability to data

Each of these has

D/ probability 1/9

Each of these has
probability O




Fitting the data: the Bayesian view

L The likelihood
P(z|h) =4 N itz eh function assigns
N 0 otherwise probability to data
Better fit!
1/33
1/9

°



Fitting the data: the Bayesian view

L The likelihood
Plalh) = 1 N if x € h function assigns
0 otherwise probability to data

/33 Better fit!

L]



preferred by the

likelihood
/12
[o]
1/12
(ol
]
- |

/121




Bayesian Ockham’s razor

Likelihood enforces data fit
Prior enforces simplicity
Posterior enforces Ockham’s razor

P(hlx) o P(x|h)P(h)



preferred by
the prior

preferred by the

likelihood
v
(o] L)
r o [ ]
D -
- |




preferred by the
posterior

N




How much is it preferred?
(demo code: battleships|.R)



Probability: 40% Probability: 10%

- prior

Probability: 40% Probability: 10%




Probability: 72.78% Probability: 18.2%

posterior after one

observation

Probability: 7.22% Probability: 1.8%




Probability: 79.22% Probability: 19.81%

posterior after two
observations

Probability: 0.78% Probability: 0.19%




Probability: 0%

Probability: 0.39%

Probability: 99.51%

Probability: 0.1%

A7

posterior after three
observations

does 99.5% feel extreme!?
it should: most people
are “‘conservative”
relative to Bayes in this
sort of problem



Probability: 0% Probability: 99.95%

posterior after four

> observations
—
Probability: 0.04% Probability: 0.01%




All possible |-ship and 2-ship solutions in

a 10x10 grid
(demo code: battleships2.R)



Larger hypothesis space

® |na I0xI0 grid, there are:
® 3025 distinct rectangles
® 5,009,400 pairs of non-overlapping rectangles

® Simplicity prior:set P(h) so that
® TJotal prior probability of | rectangle is 67%
® TJotal prior probability of 2 rectangles is 33%

1 2 1 1
3025 3 5009400 3

P(h)

if h contains one rectangle if h contains two rectangles



After one observation

One rectangle. Posterior = 65% Two rectangles. Posterior = 35%

One observation tells you a lot about possible locations
(dark squares), but the posterior probability of | vs 2
rectangles hasn’t moved much from the priors



10

After two observations

One rectangle. Posterior = 70%

10

10

Two rectangles. Posterior = 30%

10




10

After three observations

One rectangle. Posterior = 57%

10

Two rectangles. Posterior = 43%

10




10

After four observations

One rectangle. Posterior = 49%

10

Two rectangles. Posterior = 51%




10

After five observations

One rectangle. Posterior = 36%

Two rectangles. Posterior = 64%

10




After six observations

One rectangle. Posterior = 27% Two rectangles. Posterior = 73%

At this point the evidence is moderately convincing that
there are probably two rectangles here




After seven observations

One rectangle. Posterior = 58% Two rectangles. Posterior = 42%

But it doesn’t take much to shift beliefs a long way!




Simplicity from an algorithmic complexity
theory perspective



Simplicity = compressability

® Minimum description length principle

® Simple things are short things

® Specifically, the more you can compress something
(using some “‘sensible” algorithm), the simpler it is

complex

1001010111011
1011101011011
1111111111010
1001111010011
1100110110011

simple

1111717171171711711311
1111717171171171111
1111717171111311311
00000000
000000VVVVA0



The idealised version

® Kolmogorov complexity

® The complexity K(s) of string s with respect to
programming language L is the length in bits of the
shortest program that prints s and then halts

® The language L doesn’t actually matter much

® The tricky part is that K(s) is uncomputable

® Solomonoff’s universal prior
® Each hypothesis is encoded as a string h

® Optimal version of Ockham’s razor uses the prior:

P(h) o< 27K M)



Various practical suggestions

Use a small set of Turing machines, instead of
considering all possible programs written for a
universal Turing machine (Dowe, Wallace)

Use statistical considerations to figure out what
prior minimises your worst-case loss (Rissanen)

Use a real compression algorithm to do the work
(e.g. Lempel-Ziv-Welch)

Use something that intuitively seems to capture
the idea of simplicity (most of us!)



