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The general problem to solve

How do | generate random samples from
an arbitrarily chosen probability

distribution z ~ P(z), especially when my
knowledge of P(z) itself may be limited?



The most common example

P(z|h)P(h)

very complicated when there
Sampling from P(h | x) might
be a very nice thing to be able
to do!

P(
Posterior distributions can be
are lots of hypotheses.
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Overview

* The conjugacy trick
— Something that we can use to avoid having to
resort to computational methods
— Also something that is a building block for a lot of
models that get used in real life
* Importance sampling

— A very simple Monte Carlo method that is rarely
useful, but provides the foundations for things
that actually are useful



Overview

 Markov chain Monte Carlo
— A clever trick that solves a lot of problems
— Detailed discussion of Metropolis-Hastings

— Quick comments: Gibbs sampling & simulated
annealing

e Particle filtering
— A digression on likelihood weighting.

— How to make importance sampling actually useful
for problems that have a sequential structure.



Notation

* Lecture goes back and forth between:
— Sampling from some generic distribution
— Sampling from the posterior distribution
 The ideas are quite general, but I'll distinguish
between the two cases notationally:
— Generic distribution: P(z)
— Posterior distribution: P(h | x)

* |'ve gotten sloppy about “p versus P” notation



WARNING: Computational statistics can be hard.

It’s worth the effort though. The ideas in these
lectures (a) are critical for later parts of the
course, and (b) formed the foundation for nearly
every major advance in Bayesian statistics and a
solid chunk of probabilistic machine learning in
the last 20 years.




THE CONJUGACY TRICK

Actually, this first part has nothing to do with our “sample from P(z)”
problem, but it’s so very common in statistics, cognitive science and
machine learning that | really ought to talk about it a bit...



| hate coding

* Asarule...if | can find any trick to avoid or
minimise the amount of time | spend coding
up models, I'll use it.

* So what | want to know is... when can | avoid
having to write lots of code to solve my
problems?
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Small hypothesis spaces

 “There’s a fireworks display tonight.”
 What day of the year is it?”
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Small hypothesis spaces

e Solution is simple...
— Only 366 possible hypotheses.
— P(h) is nearly uniform (except Feb 29t")
— P(x | h) is mostly low (except Jan 1%, Jan 26" etc)
— So P(h | x) involves a sum over 366 simple things.
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Analytic solutions

* Email prioritisation. | have observed...
—n = 100 emails with the [allstaff] tag.
— k = 0 of them are interesting.

 What is the probability that the next email
that has the [allstaff] tag turns out to be

interesting?
— Can we solve this without coding?
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Bayes

* Ois the probability that [allstaff] is useful...
P(k|0) p(6)
[ P(K|6") p(0") do’

p(0lk) =

— The posterior p(61k) is a density over 6
— Need the likelihood P(k | 8) and the prior p(6 ).
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Likelihood is binomial

e Binomials:

— The probability we see exactly k “successes” from
n independent trials, where the probability of
individual success is 8

— The formula:

n!

kl(n—k)!

P(k|,n) = PR (1 — O "
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Likelihood is binomial

6=0.5 n=20
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Prior is beta

e Beta distribution:

— Intuitive introduction to the beta distribution is
the same as Laplace smoothing...

— Let’s pretend that we’ve seen (3, “prior successes”,
and (3, “prior failures”

p(0) o< 1711 — g)P2~!
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Prior is beta

e Beta distribution:

— Intuitive introduction to the beta distribution is
the same as Laplace smoothing...

— Let’s pretend that we’ve seen (3, “prior successes”,
and (3, “prior failures”

051—1(1 _ 9)[32—1

p(0) =
( ) fol 9/,31_1(1 _ 9/)52—1 A0’

18



Prior is beta

e Beta distribution:

— Intuitive introduction to the beta distribution is
the same as Laplace smoothing...

— Let’s pretend that we’ve seen (3, “prior successes”,

and f, “prior failures”

(ﬁl + 52) 931— ( 0)32—1

PO) = T(6,)T(Ba)
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(Gamma function?)

 I'(x) =(x-1)! forinteger valued x
e T'(x) =(x-1)I'(x-1) forallx
e T'(x)

— has easily computed approximations for all x (e.g.,
Lanczos approx — see the tech note),

— is a built in function in lots of languages
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Wait... what tech note?

An introduction to the Beta-Binomial model

COMPSCI 3016: Computational Cognitive Science
Dan Navarro & Amy Perfors
University of Adelaide

Abstract

This note provides a detailed discussion of the *beta-binomial model” de-
scribed in lecture 4, and pops up in several places in the lecture series. The
goal is to (a) give you a more comprehensive resource to work from, and
(b) to highlight some of the interesting technical issues that will arise when
you try to build models of your own. Additionally, the notes aim to be self-
contained — very little knowledge of statistics will be assumed. If anything
the notes doesn’t make sense please contact me (these notes were written by
Dan: daniel.navarro@adelaide.edu.au) and I'll try to fix them!

Introduction

The beta-binomial model (along with the closely-related beta-Bernoulli model) is
probably the simplest interesting Bayesian model. It is tractable, useful for simple situations
(e.g., the coins problem from lecture 4), and is easy to extend to more interesting examples
(e.g., the Al survey problem from lectures 11-13). As such, it forms one of the basic building
blocks for Bayesian modelling in cognitive science as well as other disciplines. This note

deserihes the madel in same detail Nhuaech af this material shanld he verv familiar ta van

This onel
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Betas are flexible, handy things
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Betas are flexible, handy things

Beta(2,2)
Beta(3,2)
Beta(4,2)
Beta(5,2)
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Betas are flexible, handy things

o5 The mean of a Beta(,, 5,)
) «~ distribution is

)

)

2r Beta

/\ B,/ (B;+05)
15} /\

1 // \\

P(6)
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Betas are flexible, handy things
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Betas and binomials

go together nicely

P(k|0)p(0)
P(k)

p(0]k)
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x P(k|0)p(6)
Let’s apply Bayes’ rule to find
the posterior distribution over

Beta and the likelihood is

6, assuming that the pr
Binomial
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Betas and binomials

 P(k|O)p(6) go together nicely
P(k)

< P(k|0)p(0)

n! n— F(,B1)F(,82) L a
Kl(n — k)!ﬁk(l — )" F x T(B, 1 B,) 9P (1 — e)ﬁ 1

/ /

Binomial likelihood Beta prior
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Betas and binomials

P(k|0)p(6) go together nicely
P(k)

P(k|0)p(0)

gkoq _ gyn—k { DBUT(B2) gy 10 pvga—i
o s

~._

These terms don’t depend
on 6, so they’re just
constants of proportionality
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Betas and binomials

P(k|0)p(6) go together nicely
P(k)

P(k|0)p(0)

n! ke oyn—k o LWB)L(B2) pgi—1,1  pyBa—1
k!(n—k)!g (1=6) XF(51+52)6 4=0

Ok (1 — 6)" % x P+ ~1(1 — g)P=—1

So we can basically ignore them... we're
only interested in p(61k) up to a
constant of proportionality anyway!
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Betas and binomials

P(k|0)p(6) go together nicely
P(k)
P(k|0)p(0)
n! n— F(ﬁl)r(ﬁg) 3, —1 By —1
k!(n_k)leku—e) k% F(ﬁﬁﬁg)eﬂ (1 —6)°

914;(1 o Q)n—k X 6[31—1(1 o 9),62—1

9k+ﬂ1—1(1 _ g)n—k+ﬂz—1

Finally, if we collect terms, we
get this... which is basically
the formula for a beta
distribution again, just with
different parameter values.



The conjugacy property...

* If p(6) is Beta... 6 ~ Beta(p,,[5,)
and P(k) is Binomial... k ~ Binomial(6)



The conjugacy property...

* If p(6) is Beta... 0 ~ Beta(;,/5,)
and P(k) is Binomial... k ~ Binomial(60)

* Then p(81k) is also Beta...

01 k ~ Beta(B, + k, 5, + n-k)
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Back to the email problem

* Email problem:
— Data are binomial
— k=0 good emails
— n=100 emails total
* Priors:
— | have a bias to think emails often useless

— Beta prior with, say.... g, =1, ,=3

33



The posteriors, and my expectations
about the future of my email...

* Using the conjugacy property:
— Posterior is Beta(, + k, 3, + n-k)
—i.e., Beta(1,103)

* Probability that new email will be good?

— Mean of Beta(x,y) distribution is x / (x+y)
—1/104 = .0096

Notice that this is a similar result to Laplace

smoothing... which is what you’d hope to see. 3¢



Postscript

 Why such a fuss over beta-binomial models?
— It’s basically just Laplace smoothing right?

— Sort of: beta-binomials give you the theoretical
foundations to Laplace smoothing, but they’re
more general.

— The full probabilistic formalism gives you access to
other measures besides the posterior mean.



Postscript

 Why such a fuss over beta-binomial models?

— Beta-binomials (and their multivariate
generalisation, Dirichlet-multinomials) are a basic
building block for lots of very cool methods.

— See, e.g., latent Dirichlet allocation (look it up on
Google). It’s a machine learning tool popular for
the last 8 years or so; relies fundamentally on the
conjugacy trick that I've just described.



Postscript

* The conjugacy trick is quite general...
— beta-binomial
— Dirichlet-multinomial
— Poisson-gamma
— normal-gamma
— multivariate normal-inverse Wishart
— Dirichlet process—i.i.d. sampling

(any likelihood function in
the “exponential family”
has a conjugate prior) 37



This is good spot to ask questions.



A BILLION WAYS THAT STATISTICS
CAN BE VERY HARD.



A very simple inference problem

* A survey of 100 people

— Asks whether they agree or disagree with 20
statements about “the strong Al hypothesis” (that the

mind is a Turing machine )
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A very simple inference problem

* A survey of 100 people

— Asks whether they agree or disagree with 20
statements about “the strong Al hypothesis” (that the
mind is a Turing machine )

* The reponses:

— Most humans are pretty similar to each other, and
they don’t agree with many of your survey questions

— But as it turns out, some of your respondents are
actually robots, and they have a different opinion...

41
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The Al survey “data”
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The Al survey “data”
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A model for these data

* With probability ¢, the respondent is human

* For robots, the number of agreements is
pinomial with rate 6,

* For humans, the number of agreements is
pinomial with rate 6,

* Three unknown parameters ¢, 6,and 6,

44



Priors for this model?

e Beta distribution:

P{&)

o - (g (8} SN (%

P(6f|a,b)

a=2,b=11

Ha_l(l . e)b—l
Jy 62=1(1 — 6)b—1df

X ea—l(l o e)b—l

Use beta priors for all three
parameters, 6, 6, and ¢, but with
different values of a and b for each
case

0.5

45



Likelihoods for this model

e Mixture of two binomials:

P(z|6o,61,9) = ¢P(z|61) + (1 — ¢)P(z|6o)

where: N

P(z|§) = = :'B)!x!om — )N

x 6°(1—-6)N-=

and N =20
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The true distribution:

¢ H] — .3, H(): .8, ¢: .7:
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number of statements agreed witl

20
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Here’s the true answer & the
hypothesis space that it belongs to...

—
—

¢
®

robots, 6,
P(human)

o
o

=)
—

humans, 6,
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TWO VERY BAD IDEAS, IF YOU WANT TO
KNOW ABOUT THE POSTERIOR
DISTRIBUTION...
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Trying to solve it analytically?

* Here’s the mathematical expression:

P(X|91,02,¢5)P(91,02,¢)
I3 [ [ P(x[61, 02, 6)P(61,02,¢) dfy dz do

P(0,, 0, ¢|x) =

* The triple-integral there looks nasty

— and this problem is much simpler than anything
you might need to solve in real life!

50



Trying to solve it by brute force?

* We could discretise the hypothesis space

— 1000 values for 6,, 1000 values for 6; and 1000

values for ¢ means we need to sum over 10°
hypotheses
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Trying to solve it by brute force?

* We could discretise the hypothesis space

— 1000 values for 6, 1000 values for 6, and 1000

values for ¢ means we need to sum over 10°
hypotheses

— In general, O values for K parameters is going to
require you to compute predictions for QX
hypotheses.

— Interesting models can have large K, so this isn’t
going to scale very well!
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The fundamental problem: the space is
big and the distribution is sparse

1

This is a thin slice through a
“brute force” evaluation for a
[ 100 by 100 by 100 grid over
the parameters 6,, 6, and ¢.
(¢ =.7 in this slice).

robots, 6,

humans, 6,
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The fundamental problem: the space is
big and the distribution is sparse

T~

robots, 6,

humans, 6,

This is a thin slice through a
“brute force” evaluation for a
100 by 100 by 100 grid over
the parameters 6,, 6, and ¢.
(¢ =.7 in this slice).

The posterior is “sparse”.
2243 of the 1030301
parameter sets (a mere
0.22%) make up 95% of the
posterior probability

Very wasteful simulation.
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The fundamental problem: the space is

big and the distribution is sparse

1

Sparsity means that
. randomly chosen
L . parameter values
' aren’t very likely to be
useful.

robots, 6,

We need to do
something smarter
than brute force
evaluation (or random
generation)

humans, 6,
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Interim summary

* When the number of parameters gets large,
the posterior distribution
— is usually analytically intractable
— is defined over a high-dimensional space

— has near-zero probability across the vast majority
of that space (esp. when you have a lot of data)
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PROPOSED SOLUTION... GENERATE
SOLUTIONS BY SAMPLING “DIRECTLY”
FROM THIS POSTERIOR
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Using samples for estimation

— |If we have a set of samples
from the distribution, we can
use that set of samples to
construct approximations to
that distribution

58



Using samples for estimation

— |If we have a set of samples
from the distribution, we can
use that set of samples to
construct approximations to
that distribution

— e.g., approximating the —
Beta(20,12) with 100 samples

Note that what we’re
doing is treating the set
of samples as if it were
the actual distribution!

This “Monte Carlo” idea
is a trick we are going to
use a lot.
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Using samples for estimation

— |If we have a set of samples
from the distribution, we can
use that set of samples to

construct approximations to
that distribution ,“
— e.g., approximating the N
Beta(20,12) with 100 samples
— Sparsity of the distribution /
doesn’t matter as much,
because the samples will be

clustered in the right part of
the space!

humans, 6,
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“Monte Carlo approximation” to a
distribution P(z)

* Treat the distribution of the samples as an
approximation to P(z)

* Formally: "
1
1=1
for Z; ~ P(z) Sort of dumb to have so much notation

for something so simple, but it’s hand.
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“Monte Carlo approximation” to a
distribution P(z)

All it means is that we’re
approximating the distribution

of interest P(z) by taking an
average...
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“Monte Carlo approximation” to a
distribution P(z)

... the average of lots of “delta functions”; which
assign probability 1 to the value z; and probability O
to all others
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“Monte Carlo approximation” to a
distribution P(z)

In short... the sample itself is being used as an
approximation to the target distribution P()

P(z) ~ Z 6(2;)
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The big question: where do these
samples come from?

Sometimes, the world will do
the work for you!

There are problems in psychology where the
world generates “samples” from a target
distribution for you.
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The big question: where do these
samples come from?

t~Poisson(A)

,,,,, Sometimes there is a well-
set L=exp(—k), t=0; p_l’ known algorithm for
do while p > L sampling from the

f— 47 distribution
generate u ~ Uniform([0,1])
= X101 t
p=PpP U P(t|)\):)\ exp')( A)
t=t-1; ¢!

* hint. You’ll need this algorithm

during the decision making lectures
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The big question: where do these
samples come from?

In most cases, we don’t have
an algorithm designed to

generate samples directly
from P(z)

67



Three suggestions

* Importance sampling

 Markov chain Monte Carlo (MCMC)
— Metropolis-Hastings
— Gibbs sampling

* Particle filtering

— aka. Sequential importance samplers
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Let’s start with a method that is totally useless in real life!

IMPORTANCE SAMPLING WHEN WE
CAN EVALUATE THE EQUATION FOR P(2)
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What do we know about P(z)?

* Obviously, if the answer is “nothing
whatsoever”, then we’re screwed...

* Suppose we know the equation for P(z).

— So we can *evaluate* P(z), but we don’t know for
sure (ahead of time) which values of z correspond
to big or small values of P(z).
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Importance sampling

e The idea...

— | can’t sample directly from P(z). So I'll make up
some other distribution Q(z) which looks similar,
but which | do know how to sample from....

* Specifically...

— I'll sample z ~ Q(z) first, and then make some
“corrections” to deal with the fact that P = O
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Importance sampling

* Even more specifically...

— Generate the samples from the wrong distribution

Q(), and then re-weight them to correct for the
fact that O() = P().

— That is, the unweighted samples approximate ()
— But the weighted samples approximate P().
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P(z)

The thing we want to
generate samples from, called
the target distribution

The thing we know
how to sample from,
called the importance
distribution

Q(z)
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This is more likely under P()
than Q(), so if we don’t
correct for it, this value of z
will be underweighted

(that is, if we don’t reweight
we’ll have too many samples
here)
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This is less likely under P()
than Q(), so if we don’t
correct for it, this value of z
will be overweighted

/ (that is, if we don’t reweight
we’ll won’t have enough
samples here)
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How much to reweight:

* \WWe want value z to appear with prob. P(z)
* |t actually appears with prob. Q(z)

* Therefore, the importance weight that we
assign to a sampled value of z needs to be

w(z) = P(z) | Q(z)
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The Monte Carlo approximation to P(z)
based on importance sampling...

where z; ~ Q(2)

and w(z) = gié%



IMPORTANCE SAMPLING “ALGORITHM”

fori =1:n

generate sample z; from the importance distribution Q(z)
calculate the importance weight w(z,) = P(z) / Q(z,)

end
treat the set of weighted samples z; as the approximation to P(z),

and calculate what ever you want; e.g. distribution mean is
approximated as the weighted sample mean, etc.
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IN REAL LIFE, IT’S RARE TO HAVE
THE *WHOLE* EQUATION...



A very common situation

1.2¢

1_

. 0.8} p(z) — ffooo f(Z,) dz/

0.6

04r

02r

0

f(2) = exp(—22)(2 + sin(5z) + sin(2z))
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, for the special case

tuation

IS Si

where f(z) is the prior times the likelihood,

are exactly th

Really? Is this really common?

— Almost all large-scale Bayesian inference problems

* Yes.
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Okay, so we only know f(z)

* No problem...

— We know f(z), where P(z) = k f(z) for unknown
constant k

— So if we calculate w*(z) = f(z) / Q(z), then:

P(2) ~ k x %Zw*(zi)é(zi)
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But P(z) is a probability distribution...

* So the weights ought to sum to 1, right?
Therefore we can approximate k like this...
1

D i WH(2:)
* And so our distribution approximation is:

?:1 w*(2:)0(2:)
Z?:l w*(2;)

* Or, toputitinasimpler way...

k~n

P(z) =~ 2
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Importance weights...

* If we only know f(z), then the importance
weights are:

w(z:) = f(z:)/Q(2)
U 2o F(2)/Q(%))

 Otherwise, everything else is the same as in
the earlier version when we knew P(z).

— same pseudo code, but with this formula for w(z)
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OO0 0 2| importancesampler.m

3 (3| function importancesampler(mu,sig,n)

4

5 % run an importance sampler for n samples using

6 % a normal distribution as the importance sampler

7 % with mean mu and standard deviation sig. makes M O O X matlab -nodesktop -display $D...
8 % use of the stats toolbox functions normpdf 1)

9 % and normrnd. 1SS

10 ¢ ) ) >> importancesampler(-0,1,1000)

11 % (btw: if your language of preference doesn't »I]

12 % have a "generate from normal dist" random

13 % number generator, google the "Box-Muller"

14 % transform; if it doesn’'t have a random

15 % number generator for uniform distribution over

16 % [0,1], change languages; or google "Mersenne

17 % twister"”) 2
18

19 $ n by 1 array of normally distributed numbers

20 % i.e. samples from Q() -

21 z = normrnd(mu,sig,n,l); 000 Figure 1

22 File Edit View Insert Tools Desktop Window Help

23 % calculate the probability density function ;

24 % i.e. values of Q(z) for all z N D@@ k@@@@@%'@ DIE .@

25 gz = normpdf(z,mu,siqg);

26

27 % now evaluate the function fz 14 r

28 fz = targetfunction(z); true dist F'(Z)
29

30 % calculate the w* weights 12F ——=importance dist Q(z)
g; w=fz ./ az approx P(z)
33 % normalise w* so that we get importance weight

34 % that actually sum to 1

35 we=w/ sun(w);

36

37 % draw a picture

38 drawpicture(z,w,mu,sig)

39

40

41

42

43

44 | function fz = targetfunction(z)

45

46 % evaluate the function f(z), where f(z) = k P

47 % is proportional to the target distribution. 1

48 % set this up to be able to take vector inputs

49

50 % in this case, f(z) is simple

51 fz = exp(-2."2) .* (2 + sin(5*z) + sin(2*2));

52

53

Line: 88 Column: 19 ) MATLAB s v TabSize: 4  drawpicture =




The problem with importance sampling

Q(z)

P(z)

If Q and P are very different
to each other, then
importance sampling is
horribly inefficient ... which
means that you need a lot of
inside knowledge about P()
to make it work

Kind of defeats the point.
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A million samples and it’s still
complete rubbish.

true dist P(z)
——=importance dist Q(z)
approx P(z)

O O O [X| matlab -nodesktop -displa...
>

>> importancesampler(-2,7,,1,1000000)
>
>

>0

DN
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Interim summary

* Why do importance sampling?
— In rare cases, it is actually useful (i.e., when you
almost know the exact answer)

— More realistically... importance sampling is a
useful precursor to MCMC and particle filtering,
which actually are useful
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This is good spot to ask questions.



MARKOV CHAIN MONTE CARLO

90



The problem...

* As before the problem is:
— Generate samples from P(z)

— All we only know is f(z), where P(z) = k f(z)
— f(z) is a function whose values we can calculate

e What we’d like is:

— For the method to actually be useful this time.
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The tech note...

Gives you a simple walk through of
the “standard” MCMC algorithm,
with an illustration of how it needs
to be tweaked in practice.

The Metropolis-Hastings Algorithm

COMPSCI 3016: Computational Cognitive Science
Dan Navarro & Amy Perfors
University of Adelaide

Abstract
This note provides a discussion of the Metropolis-Hastings algorithm. If
anything the notes doesn’t make sense please contact me (these notes were
written by Dan: daniel.navarro@adelaide.edu.au) and I'll try to fix them!

The problem to be solved

The Metropolis-Hastings algorithm is the most popular example of a Markov chain
Monte Carlo (MCMC) method. The basic problem that it solves is to provide a method for
sampling from some generic distribution, P(z). The idea is that in many cases, you know
how to write out the equation for the probability P(z), but you don’t know how to generate
a random number from this distribution, z ~ P(z). This is the situation where MCMC is
handy. In fact, for the Metropolis-Hastings algorithm we don’t even need to know how to
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The idea...

* Can we do something kind of like importance
sampling, but where we allow the importance
distribution to adapt™®, and move around on its
own?

* With any luck, it would move to the right spot,
and generate good samples, without us
needing to do too much fine tuning.

* “adaptive importance sampling” is something different, by the way. 93



35

A good sampling algorithm
ought to “notice” that all of
the “good” (high weight)
samples are the ones on the
right hand side... and move
the importance distribution
around

true dist P(z)

approx P(z)

— —=importance dist Q(z)

b -nodesktop -displa...

2.7,.1,1000000)
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Hold onto that thought, because we’ll
come back to it. In the meantime...
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Markov chain Monte Carlo

— Monte Carlo: because it involves generating
samples from some probability distribution

— Markov chain: because the sample z, depends on
z, 4, but is otherwise independent of z,, z;, ..., z,,

_.@_.®_

—O—O—CO—0O—

We make use of the information in z, ; to
help us make a good chioce for z,
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Markov chain Monte Carlo

At each step, we have some
rule that describes the

‘ transition probability of
” Z3 moving from z, ; to z,
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The desired behaviour

It ought to “jitter” around

the high probability region
of the posterior distribution

robots: 91

humans: BU



Markov chain Monte Carlo

 THE TRICK: rig the Markov chain so that it will
converge to the target distribution, and draw
samples from that chain

—O—O—O—O—O—O—O0—C—

|

Transition matrix
T =P(z,,,|2,)
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Convergence?

* Ergodicity of Markov chains...

— Suppose that | draw my initial state z, from some
probability distribution P,,.

— | then sample all future states from a Markov
chain with transition matrix T

— What is the probability distribution over the n-th
sample in the chain?

P, =T"P,
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What happens when n gets large?

e Eventually the chain becomes independent of
the start point, and only depends on the
transition matrix...
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000 ) markovchainconvergence.m

function markovchainconvergence(P0,n)
plength = .1;

PO = reshape(P0,[],1); % make PO a column vector

m = length(P0): % count the states

M O O X matlab -nodesktop -display $DISPLAY
% create a tr 5
ind = floor(m 3

p = [repmat (455 PO = rand(20,1): PO = PO/sum(P0):
T = diag(p(1:1>> markovchainconvergence(PO,20)

T =T+ diag(H> ]

T(1,1) = 1-p(
T(m,m) = p(m)
T =1T+.9 + .1 OO O Figure 1

T=T"; % <-
l File Edit View Insert Tools Desktop Window Help

: statiooy | - DEES b ARUDEL-3 0B =D

S = 85(:,1);

% simulate th 04
Pt = PO;

figure(l); cl
plot(1l:m,S, 'k

h = plot(l:m,] . I I l
pause(plength e O

for ¢t = 1:n
Pt =T * }
set(h, 'yd
pause(plel

end

Line: 16 Column: 68




A Markov chain with P(z) as the
stationary distribution

* Metropolis-Hastings... the transitions are
broken into two distinct parts...
— A “proposal distribution” Q(z* | z, ;) for
generating new candidate z values; depends on
old z value.

— An “acceptance rule” A(z*| z, ;) that depends on
the target distribution P(z) (just f(z) actually).

* If candidate is accepted, set z, = z™.
* If candidate is rejected, set z, = z, ;.
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METROPOLIS-HASTINGS ALGORITHM, FOR
GENERATING SAMPLES FROM AN ARBITRARY
DISTRIBUTION, z ~ P(")

sett=0
choose a initial value z, arbitrarily
choose a “proposal distribution” Q(z* | z) that you can sample from
do while t <
increment: t=t+1
generate a “candidate” z* ~ Q(* | z,,) from the proposal
calculate the “acceptance probability”, A(z*| z, ;)
generate u ~ U(]0,1]) from a uniform distribution
if u < A, accept the candidate: set z, =z*
elseif u > A, reject the candidate: set z, = z, ;
as t> oo, the “state” of the algorithm converges z, ~ P(")
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METROPOLIS-HASTINGS ALGORITHM, F@\
GENERATING SAMPLES FROM AN ARBI THERea i L

means that we’re talking

DISTRIBUTION, z ~ P(") < about the distribution P(),
not the probability P(z) that

sett=0

the distribution assigns to
choose a initial value z, arbitrarily some event

choose a “proposal distribution” Q(z* | z)
do while t < oo

increment: t=1t+ 1
generate a “candidate” z* ~ Q(* | z,;) from the prpposal
calculate the “acceptance probability”, A(z*| z, ;)
generate u ~ U(]0,1]) from a uniform distribution
if u < A, accept the candidate: setz, =z"
elseif u > A, reject the candidate: set z, = z, ;

as t> oo, the “state” of the algorithm converges z, ~ P(*)
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METROPOLIS-HASTINGS ALGORITHM, FOR
GENERATING SAMPLES FROM AN ARBITRARY
DISTRIBUTION, z ~ P(")

sett=0
choose a initial value z, arbitrarily
choose a “proposal distribution” Q(z* | z) that
do while t < o
increment: t=1t+ 1
generate a “candidate” z* ~ Q(* | z,,) from the propogsal
calculate the “acceptance probability”, A(z*| z, ;)
generate u ~ U(]0,1]) from a uniform distribution
if u < A, accept the candidate: setz, =z"
elseif u > A, reject the candidate: set z, = z, ;
as t> oo, the “state” of the algorithm converges z, ~ P(*)

P(*) is called the “target”

distribution.
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The acceptance probability is:

P(z*) _ Qzeal2®)

A(z*|z¢~1) = min | 1,

Plzi1)  Q("|ze_1)

(we’ll come back to this in a minute...)

choose a “proposal distributten” Q(z* | z) that you can sample from
do while t < o
increment: t=1t+ 1
generate a “candidate” z* ~ Q(* | 2N\ from the proposal
calculate the “acceptance probability”, A(z*| z, ;)
generate u ~ U([0,1]) from a uniform distribution
if u < A, accept the candidate: setz, =z"
elseif u > A, reject the candidate: set z, = z, ;
as t> oo, the “state” of the algorithm converges z, ~ P(*)
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METROPOLIS-HASTINGS ALGORITHM, FOR
GENERATING SAMPLES FROM AN ARBITRARY
DISTRIBUTION, z ~ P(")

sett=0

choose a initial value z, arbitrarily

choose a “proposal distribution” Q(z* | z) that you can sample from

do while t < oo
increment: t=1t+ 1
generate a “candidate” z* ~ Q(*
calculate the “acceptance probal The algorithm is VERY

generate 1 ~ L([0,1]) from a uni @ eerey o eR A S Ty s
if u < A, accept the candidate: s¢ proposal distribution

elseif u > A, reject the candidate
as t> oo, the “state” of the algorithm convere y
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METROPOLIS-HASTINGS ALGORITHM, FOR
GENERATING SAMPLES FROM AN ARB
DISTRIBUTION, z ~ P(")

You can’t run it for an infinite

sett=20 number of iterations, so you
choose a initial value z, arbitraril need to make decisions

. . 2 !
choose a “proposal distribetion” O | - about how long to wait

calculate the “ae€eptance probability”, A(z*| z, ;)
generate u ([0,1]) from a uniform distribution

as t> oo, the “state” of the algorithm converges z, ~ P(°)
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The acceptance probability

 Here’s the equation again:

* — i (1. L&) Qza]z)
A(z%|z4—1) = (1’ P(z4_1) Q(z*lzt—1))

— Note that it depends on both the target
distribution P, and the proposal distribution Q
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The “min” part isn’t interesting: it’s just

there to ensure that A is actually a
probability.

A(z*|z—1)

/
min ( 1,

P(z*)

\

P(Zt_l)

Q(2:-1|2")

Q(z*|2-1)

)

111



P(z") | Q212"

A(z*|z4—1) = min | 1, X
(2% |2t-1) Pleet) Qe o)

Probability of the candidate z* under the
target distribution, relative to the

probability of the current state z, ;. In
most cases, this is something we can
calculate (see later)
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Q(z¢—1]2")

Q(z*[2t-1).




Suppose we chose Q like this:
z¥=2z,,+y+1/3
where y ~ beta(2,4)

A correction factor. If your proposal
makes it more likely that you try the
move 2, ; - z* than the reverse move,

(i.e., if z* had been the current state and

you were proposing to move to the new

location z, ;) you end up with a bias that N
needs to be corrected

P(z*)

A(z*|z4—1) =min [ 1,
(2*|2¢—1) mm( Pl )

L Qeea]z")

Q(2*|2-1)

114
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A correction factor. If your proposal
makes it more likely that you try the

move 2, ; - z* than the reverse move,
(i.e., if z* had been the current state and

you were proposing to move to the new

Suppose we chose Q like this: location 1) you end up with  bias hat
z¥=z,+y+1/3
where y ~ beta(2,4)

The blue curve is the proposal
distribution that we used,
given that z, ; actually is the
current state, i.e., Q(*lz, ;)

The red curve is the proposal
distribution that we would
have used if z* were the
current state, i.e., Q( 1z%)

ot e
Lk "
*

Ziq v4
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A correction factor. If your proposal
makes it more likely that you try the
move z, ; - z* than the reverse move,

(i.e., if z* had been the current state and

you were proposing to move to the new
location z, ;) you end up with a bias that

Suppose we chose Q like this: e o be comected \
z*=z,,+y+1/3 P9l
where y ~ beta(2,4) P(ee-1) | Q(z*[2e-1)

A(2*|zt—1) = min (l,

If the proposal distribution is ASYMMETRIC, then in
general you will find that O(z, ;| z*) = Q(z* | z, ;)
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A correction factor. If your proposal
makes it more likely that you try the
move z, ; - z* than the reverse move,

(i.e., if z* had been the current state and

you were proposing to move to the new

Suppose we chose Q like this: o s robe e \

¥ =z, +y P9l
where y ~ normal(0,1) P(z1) | Q(z*z-1)

A(2*|zt—1) = min (l,

*

Ziq z

If the proposal distribution is SYMMETRIC, then
Az, 12z*) =Q(z" | z, 1).

This is called a “Metropolis sampler” 1



A(z*|z4—1) = min (1,

P(z*)

P(Zt_l)

Q(z¢—1]2")

Q(z*[2t-1).




Metropolis algorithm only allows
symmetric proposal distributions, so we

can ignore Q when calculating the
acceptance probability!

P(z*)
P(Zt_l)

A(z"|zt—1) = min | 1,

119



* (P
Why is this awesome? A(z |Zt_1) — i ’ P(Zt—l)
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P(z*)
. . A * . — 1 1
Why is this awesome? (z |Zt 1) - ( , P(Zt—l))

£(z*)

S, f&)
_f(zt—1)
>, f(@)

N

In the generic case.... we
only need to use f(z).
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P(z*) )

* .
Why is this awesome? Az —1) =
! P(zt—l)

In the Bayesian special case, we
don’t need to compute the sum
over the hypothesis space!

/ T~

( P(z|h*)P(h*)

, P(z|h'")P(h') )

P(ht—1|z)P(ht—1))
( “P(z|h)P(R)
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So, how does the Metropolis

algorithm work?

A(z%|24-1) = min (1’ pIZZj))
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So, how does the Metropolis
algorithm work?

THE TARGET DISTRIBUTION ﬂ
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So, how does the Metropolis

algorithm work?

A(2*|2¢—1) = min (1,

P(z)

THE CURRENT STATE z,

125



So, how does the Metropolis

algorithm work?

A(2*|2¢—1) = min (1,

P(z)

SYMMETRIC PROPOSAL DISTRIBUTION Q
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o—e

So, how does the Metropolis

algorithm work?

A(2*|2¢—1) = min (1,

P(z)

CANDIDATE z* GENERATED FROM
THE PROPOSAL DISTRIBUTION
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So, how does the Metropolis

algorithm work?

A(2*|2¢—1) = min (1,

P(z)

\ Al z,,) =05

THE CANDIDATE z* IS HALF AS
LIKELY AS z, ; SO THE ACCEPTANCE
PROBABILITY IS 0.5
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So, how does the Metropolis

algorithm work?

A(2*|2¢—1) = min (1,

P(z)

WHAT HAPPENS IF THE
CANDIDATE IS MORE LIKELY?
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So, how does the Metropolis

algorithm work?

A(2"|z¢-1) = min (1’ IﬁS?))

P(z)

o

\ /
Azl z;)=1

ACCEPT WITH PROBABILITY 1
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The Metropolis algorithm is actually
very simple

|”

— If the candidate is an “uphill” move, always accept

— If it’s a “downhill” move, sometimes accept (based
on exactly how far downhill it is).
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Try it yourself.

* Construct a Metropolis algorithm to sample
from this distribution (see tech note if stuck)

P(z)

02r

0
-3

3

P(2)

f(2) = exp(—2°)(2 + sin(5z) + sin(2z))
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Application to the “Al survey data”

e Reminder:

14,
12
10+
& 8
=
3
&
g 6f
s
1 |
0
0 5
number of

— Data are generated from a mixture of two

binomials, one with parameter 6, and the other 6,.

Total proportion of the data from g, is ¢.

10 15 20
tatements agreed witl
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e Reminder:

12
10+
8t
=
3
&
g 6f
4+
1 |
0
0 5
number of

Application to the “Al survey data”

— Data are generated from a mixture of two

binomials, one with parameter 6, and the other 6,.

Total proportion of the data from g, is ¢.
— My prior is:
6, ~beta(5,50) (the humans don’t believe in Al)

* 6, ~ beta(50,5) (the robots do believe in Al
* ¢~ beta(2,20) (more humans than robots in the survey)

10 15 20
statements agreed witl
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Application to the “Al survey data”

Reminder:

Our Metropolis sampler will use a proposal
distribution that is a normal distribution

with mean located at the current value and
std. dev. 0.05. It will only resample one
parameter at a time...

* 6, ~ beta(50,5) (the robots do believe in Al
* ¢~ beta(2,20) (more humans than robots in the survey)

135
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METROPOLIS ALGORITHM FOR THE “Al SURVEY” DATA
sett=0.

choose value for o2
choose initial value 6,,, 6,,, ¢,arbitrarily
separate Gaussian-proposals for each parameter
do while t <

increment: t=t+1

6y, = resample(6,, ; , 0°)

0,,=resample(6, ,;, 0?)

¢, = resample(@, ;, 0?)
as t> oo, the “state” of the algorithm converges x, ~ P(°)
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z,=resample(z, ;, 0?)

generate a “candidate” z* ~ normal(z, ;,07)
calculate the “acceptance probability”, A(z*| z, ;)
generate u ~ U([0,1]) from a uniform distribution
if u < A, accept the candidate: set z, =z"

elseif u > A, reject the candidate: set z, = z, ;
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™ O O Editor - /Users/dan/Work/teaching/computation

File

Edit

falala

Figure 1

File

Text Go Cell Tools Debug Deskto

Edit View Insert

Tools Desktop Window Help

DR « @9 o

N

Od de

s

NP E S

= 0B =mO

1.0 + + L1 ox ok % @

= function metropolisdemo

% load the AI data
load aidata; M=ml+m2;

reformat the AI data: The raw data lists
agreements n for each participant. Since
value of n is represented at least once,
efficient to reformat as a vector of coul
counts the number of participants who agi
statments (remember, Matlab indexing stal
X=zeros(N+1,1);
for i=1:M
n=numbercfagreements(i);
X(n+l)=x(n+l)+1;
end

% specify parameters for the prior
a _th0 = 5; b th0 = 50;
a_thl = 50; b_thl = 5;
a phi = 20; b phi = 2;

% initialise variables randomly
thO=rand;

thl=rand;

phi=rand;

(h_th,h_phi]=setupplots; % set up figure

% iterate sampler
nits=1000;
sig2=.05;

for t=1l:nits

% redraw parameters

B,

robots

o= P(human)

thO=redraw(l,[th0 thl phi],sig2,a th0O,b_th0,x);
thl=redraw(2,[th0 thl phi],sig2,a thl,b thl,x);
phi=redraw(3,[th0 thl phi],sig2,a phi,b phi,x);

% draw me a pretty picture
disp([th0 thl phi])

set(h_th, 'xdata',th0, 'ydata',thl); % update theta location
set(h_phi, 'ydata',phi); % update theta location

pause(.01)

o RUN DEMO

)

4

>

humans: BD

x  numericalai.m x  drawbetapdf.m

lx

metropolisdemo.m

>

0.3547
0.3547
0.3547
0.3547
0.3547
0.3547

0.8135
0.8412
0.8412
0.8412
0.8412

0.7945
0.7756
0.7765
0.7833
0.8058

metropolisdemo/setupplots]l.n 133 Col 18




This is a good spot to ask questions...
(e.g. “What is the relationship

between Metropolis-Hastings and
simulated annealing?”)
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Notes on MCMC convergence



—h

g8 8 8 8 8

From the tech note....

¢ =0.025 c=50

-t

o
)

o
@

o
»

0.6

" ‘ll
A _-'Illll IIII
2 - 0 1

e
(2]

T
-
-
B
B

probability density
probability density

<)
[
<)
[

-93 2 3 1(!)%3 3 10£3 -2 -1 0 1 2 3
———t

[ 800} 800 =P
c ! c
g 600 g 600

t £ 400} 3 400

F 200+ 200

0 0 - - 0

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

location location location

Fiqure 3. Metropolis samplers for the toy problem, with a good choice of proposal distribution
(o0 = 1, left panel), a proposal distribution that is too narrow (¢ = .025, middle panel), and a
proposal distribution that is too wide (o = 50, right panel).
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Monitoring the sampler

-1250
In P(x|6p. 6 In P(6q. 6
P n P(x|0g,01,¢) +1In P (6o, 01, 9)

-1350

-1400

unnormalised log posterior

-1450};

-1500 : : ' : :
0 20 40 60 80 100
iteration
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Monitoring the sampler

-1250
-1300|
-1350F

~1400t

unnormalised log posterior

-1450 J

-1500 : : ' : :
0 20 40 60 80 100
iteration
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Monitoring the sampler

-1250

-1300+

-1350}
\ Takes about 20-30 iterations to converge

to a stable solution (for hard problems

unnormalised log posterior

~1400 _
this can be *much* longer).
~14504 This period is called the “burn in”, and
you have to discard the burn-in samples
~1500 ' : x x
0 20 40 60 80 100

iteration
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Monitoring the sampler

The samples are autocorrelated: each iteration is

somewhat dependent on the last one. Typically, we
_1290: “thin” the samples, meaning that we only “save” the
results from one in every [ iterations, where [ is the lag

-1295}

-1300|

-1305¢

unnormalised log posterior

~1310+

-1315 ' ' ' -
0 50 100 150 200
iteration
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Two stable solutions

x® ®
S ? %
i =
E i
o S
<
a
0 0
0 1
humans, 6,

The “correct” solution: there’s a few robots, and they believe in Al.
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Two stable solutions

X
SOy ? %
hdi =
2 -
@) o
>
o . £
a
0 0
0 1
humans, 6,

This solution says that most of the respondents are robots, and that

robots are more skeptical of strong-Al than humans
(lower prior probability, but not by enough, apparently...)
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-1200

Cases where it found the good solution
5 -1300+
o
3
o .
S —1400 g5 ...0.’ >
Q | /
°
D
R
< —15007
£
)
c
c
= -1600
_1700 1 1 1 1 )
0 20 40 60 80 100

iteration
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-1200

Cases where it found the good solution
-1300

~1400 H

-1500

This algorithm does a good job of finding one

of the two solutions, but rarely finds both of
them on the same run

unnormalised log posterior

-1600

There are a number of tricks that you can use
to help ensure that your sampler explores the
—1700 full distribution better, but | won’t go into
them today
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Try it yourself.

* |'ve put the Al data up on MyUni.

* Implement your own Metropolis algorithm for
solving this problem

* Try varying the variance of the proposal
distribution, o%. See what happens!

— A lot of the art to MCMC is in playing around with
the proposal distribution until it starts to work.



800

700
600
500
400
300
2001
100}

Over lots of chains... 6,

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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800

700
600
500
400
300
200
100}

Over lots of chains... 6,

0 0.1

0.2

0.3

0.4

0.5

0.6
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Over lots of chains... ¢

300 T T T T T T I T T

T

250

I

200

T

150

100

50

0 | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

51% of the solutions are “good”. But cannot trust this,
since none of the chains managed to “visit” both of the
peaks in the posterior distribution!!!
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This is a good spot for questions.



LIKELIHOOD WEIGHTING...
ANOTHER USELESS FORM OF
IMPORTANCE SAMPLING



Likelihood weighting

* |n the Bayesian context:

— A particularly simple form of importance sampling
for posterior distributions is use the prior as the
importance distribution

—set Q(h) = P(h)
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Likelihood weighting
* Simplifies the calculation of the weights w(h.):

P(z|hi)P(hi)
Q(h:)
P(z|hi)P(hi)
P(h)

= P(zl|h;)

w(h;) =




The problem (again!) is that if the

prior P(h) is sufficiently different from
the posterior P(h | x), then it fails

P(hlx)

P(h)




PARTICLE FILTERS



The particle filtering trick

* Sequential data:

()=~
(x) () () &
— The datum x, is generated from hypothesis &,

— The new hypothesis h,_; is generated from , (in some
fashion)

* We want to sample from: P(h, | x; ... x,)
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The particle filtering trick

* Non-sequential data:

— Corresponds to the special case where h,,; = h,

— I’ll start with this special case because it’s simple to
describe

— But in practice, it’s actually the hardest situation to make
the particle filter work!

* We want to sample from: P(h | x; ... x,)
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§E&8
(o) ()
P(hlzy...2;) o< P(xi|lh)P(hlz1,...,2:-1)

:

Let’s suppose, for the moment, that
we actually do know how to sample
from this
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§E&8
(o) ()
P(hlzy...2;) o< P(xi|lh)P(hlz1,...,2:-1)

N

If so, how would we
sample from this?
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P(hlxi...z:) o« P(z¢|h)P(h|lz1,...,2¢-1)

Answer: importance sampling, with likelihood weighting!

That is: generate lots of i1, values from P(h | x,, ..., x, ;), then

assign each one a weight proportional to P(x, | h). Recall, the
weight of the i-th such “particle” is:

_ Playh)
S, Pladhy)

w;
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§E&8
(o) ()
P(hlzy...2;) o< P(xi|lh)P(hlz1,...,2:-1)

/

So we have a recursion: if we can
sample from this...
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§E&8
(o) ()
P(hlzy...2;) o< P(xi|lh)P(hlz1,...,2:-1)

\

... then we can sample from this
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PARTICLE FILTERING
fori=1:n
h;,~ P(h)
w,=1/n
set A, = (w, hy)
fort=1:m
setv=0
fori=1:n
w;=P(x, | h;, ;)
V=0+w;
fori=1:n
w,=w,; | v
set A,=(w, h.,)
fori=1:n
sample h;, ~ A,
setw,=1/n
set A, = (w, h,)

Accurate, but not helpful!
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samples from
P(hlxy,...x;)

168



What do we do when x, arrives?

samples from
P(hlxy,...x;)
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weight by

P(x, 1 h)
®
®
® > @
o > @
samples from weighted “atoms”

P(hlxy,...,x3) P(hlxy,..., x,)



weight by How do we turn these “atoms”

P(x, 1 h) into a proper sample from P
(hlxy,...,x,)°
®
[
® > @
‘ > @
samples from weighted “atoms”

P(hlxy,...x;) Phlxy,..., x,)
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weight by sample (with

samples from
P(hlxy,...x;)

weighted atoms
P(hlxy,..., x,)

P(x, 1 h) replacement)
® > 99
@ A
® - @ - @
o > @

samples from
P(hlxy,...xy)



weight by sample (with

P(x, 1 h) replacement)
® > 00
® . ® EACH SAMPLE IS
] CALLED A “PARTICLE”,

AND THIS PROCESS IS

® > @ » @ A VERY SIMPLE
EXAMPLE OF A

® > ¢ PARTICLE FILTER

samples from weighted atoms samples from

P(hlxy,...,x3) P(hlxy,..., x,) P(hlxy,....x,)
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A problem...

* |f hypothesis i wasn’t present at the very
beginning — in the initial draw from P(h) — it can’t
ever appear in the approximation to P(h | x; ... x,)
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weight by sample (with

P(x, 1 h) replacement)

NO MECHANISM

® o0 FOR INTRODUCING
NEW h VALUES!!!

® ®

® > @ > @

o > @

samples from weighted atoms samples from

P(hlxy,...,x3) P(hlxy,..., x,) P(hlxy,....x,)
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Solution #1

Run a few iterations of an MCMC sampler on the
particles every now and then!

weight by
I MCM
P(x, | 1) resample CMC step
. T
®

|

®
v
@

samples from weighted atoms samples from samples from
P(hlxy,...,x3) P(hlxy,..., x,) P(hlxy,....x,) P(hlxy,...,x,)
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Dynamic models avoid the problem

— The datum x;, is generated from hypothesis i,

e Reminder:

— The new hypothesis /1, is generated from &, (in some
fashion)
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Dynamic models avoid the problem

* Why does the problem disappear?
— Because the maths is subtly different:

P(hi|z1,. .. z¢) o< P(xe|he) Y  P(hslhe—1)P(heoyl|zy,. .. 24-1)

hi_1
(1)~~~
() () () ()
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Dynamic models avoid the problem

* Why does the problem disappear?
— Because the maths is subtly different:

P(htlil?l, ¢« o ey IL’t) 0. ¢ P($t|ht) Z P(ht|ht_1)%(ht_1|$1, “ e CL’t_l)

hi_1 [

The model makes a explicit,
probabilistic transitions between
@ @ ; ; / hypotheses as data arrive.
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Dynamic models avoid the problem

* Why does the problem disappear?
— Because the maths is subtly different:

P(htlil?l, ¢« o ey IL’t) 0. ¢ P($t|ht) Z P(ht|ht_1)%(ht_1|$1, “ e CL’t_l)

hi_1 [

The consequence is that the particle filtering algorithm
involves an extra step when the model is dynamic.

@ @ @ @ As before, we sample h, ; from P(h,; | x;... x, ;) using

our particle filter approximation, but now we update

@ @ @ @ the sampled h, ; to i, by drawing from P(h, | h, ;)
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STATIC:

samples from
P(hlxy,...,x; )

weighted atoms
P(hlxy,..., x,)

weight by sample (with

P(x, | h) replacement)
[ g
[ > @
® > @ > @
[ > @

samples from
P(hlxy,...,x,)



DYNAMIC:

update to
P(h, | h,,)

samples from
P(h, ;1 xq,...x0 )

weight by
P(x,|h,)

sample (with
replacement)

»
'“
»
>
»
>

» »

» >

»

> @

samples from
P(h, 1 xq,...,x;1)

weighted atoms
P(h,1xy,..., x,)

samples from
P(h, 1 xq,...,x;)



THE MODEL ITSELF HAS A MECHANISM FOR

DYNAMIC: INTRODUCING NEW / VALUES!!!
update to weight by sample (with
P, h, ) P(x, | h,) replacement)
® \ ‘
® > 00
/ ® N
o0
T ® - -
®
T ® > @
samples from samples from weighted atoms samples from
P(h,;lxy,...x,) P(h, 1 xq,...,x;1) P(h,lxy,..., x,) P(h,lxq,...,x,)
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Solution #2

* Turn your static model into a dynamic one!
 We'll use the Al survey data as an example...

— In the original problem description, the model is
static, and described by the parameters 6, 6, and

0.
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Let x = (z1,...,z)) denote the data from the M = 100 respondents, where
x; is the number of statements endorsed by the ith survey respondent. Let s;
be an (unobserved) binary “species assignment” variable that indicates which
species each respondent belongs to, such that

g — 1 if the ith participant is human
* 1 0 if the ith participant is a robot

Where we let ¢ = P(s = 1) denote the probability that a randomly selected
survey respondent turns out to be human. Let 6y denote the probability that
a robot will endorse a statement about the strong AI hypothesis, and let 6,
denote the corresponding probability for a human. Then z; has distribution:

| Binomial(#,,N) ifs; =1
i Binomial(fy, N) ifs; =0

where there are N = 20 questions, and the Binomial(8, N') distribution is

N!

P(z|0, N) = z!(N — z)

T N—z
6°(1—0)

The values of ¢, 8, and 65 are pnknown! The problem is to infer P(6,, 62, ¢|x, M, N).
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Let x = (z1,...,z)) denote the data from the M = 100 respondents, where
x; is the number of statements endorsed by the ith survey respondent. Let s;
be an (unobserved) binary “species assignment” variable that indicates which
species each respondent belongs to, such that

g — 1 if the ith participant is human
* 1 0 if the ith participant is a robot

Where we let ¢ = P(s = 1) denote the probability that a randomly selected
survey respondent turns out to be human. Let 6y denote the probability that
a robot will endorse a statement about the strong AI hypothesis, and let 6,
denote the corresponding probability for a human. Then z; has distribution:

| Binomial(#,,N) ifs; =1
i Binomial(fy, N) ifs; =0

where there are N = 20 questions, and the Binomial(8, N') distribution is

N!

P(z|0, N) = z!(N — z)

T N—z
6°(1—0)

The values of ¢, 8, and 65 are pnknown! The problem is to infer P(6,, 62, ¢|x, M, N).
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Solution #2

* Turn your static model into a dynamic one!

 We'll use the Al survey data as an example...

— In the
static,

.
— What
variab

original problem description, the model is
and described by the parameters 6,, 6, and

nappens if we use the “species assignment
es” s =(sy, ...., Sy;), and integrate

everyt

ning else out?
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Particle filters for the Al data

* Let the k-th particle (at time t) correspond to a
set of species-assignments for the first ¢

respondents s, =

* Since we have a latent parameter ¢

k
P =1]sM) =

= (5,®,..., %)

/¢P¢|s<’“)

mi™ 120
t+22

(This follows from the

discussion of the
standard beta-binomial
model from earlier)

— where m,® is the number of respondents that the k-th

particle has classified as human so far.
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Particle filters for the Al data

* Having made a species-assignment for
respondent t+1 (for particle k) the probability

P(x,,;1s,,;) that this person endorses x,_
statements is...

1
Pz | st siph = 1) = / P(z111 | 61)P(61]st"), x;) dby

— which has an analytic solution that I'll make
explicit in the auxiliary materials
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PARTICLE FILTERING ALGORITHM FOR
THE “Al SURVEY” DATA

choose p, the number of particles
forr=1: M (i.e. add the respondents one by one)
fork=1:p (loop over the particles)
sample species assignment: s ® |s_,®
calculate unnormalised weight w®
normalise the weights so that they sumto 1
fork=1:p (loop over the particles)
resample particle k: P(new particle k = old particle j) = w?
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NUMBER OF RESPONDENTS: 5 (500 particles)

1 | I [ I | | [ I ! ’
0.8 * E
o o
0.7 i
0.6 B
n
o
m 0.5 _
o)
o
o4 BLUE DOTS: P(robot) = _
0.3 This is the right answer: 4 ......... _
of the first 5 respondents
0.2_ ......................................................... are robots!However’it ‘‘‘‘‘‘‘‘‘‘‘‘‘ —
makes it a tricky problem....
0.1 e -
0 | | | 1 | 1 | 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HUMANS

* note that this visual display plots P(robot) rather than P(human) .



ROBOTS
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NUMBER OF RESPONDENTS: 5 (500 particles)

RED DOTS: plot of e

estimated human
beliefs vs robot

beliefs. Okay, but not

great.
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ROBOTS
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NUMBER OF RESPONDENTS: 10 (500 particles)
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ROBOTS
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NUMBER OF RESPONDENTS: 15 (500 particles)
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ROBOTS
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NUMBER OF RESPONDENTS: 20 (500 particles)
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ROBOTS
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NUMBER OF RESPONDENTS: 25 (500 particles)
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NUMBER OF RESPONDENTS: 50 (500 particles)

ROBOTS
© © o @
= (3)} N ~

o
w

I I I I I ! I I !

The implied @ values
have moved to the
~rightspot E:

The implied ¢ values
- have moved to the - -
right spot

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HUMANS
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Soed cinatay Neiyads s NEELS M ARATDEL- 32 0B aO
X = numberofagreements;
NUMBER OF RESPONDENTS: 16 (500 particles)

function particlefiltersdemo

% specify parameters for the prior
a th0 = 5; b th0 = 50; % robots
a_thl = 50; b _thl = 5; % humans
a_phi 20; b phi 2; % p(human)

% initialise the particles

np=500;

S=zeros(np,M); % species-assignment varial
W=zeros(np,l); % weight vector

D =g ds W
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% add the respondents, one at a time
for i = 1:M

0.6

wsum=0;
for p = 1:np % for each particle

% update each particle based on P|
nh = nnz(S(p,:)); % number of humi
ph = (nh + a phi)/(i + a_phi + b_}
if rand<= ph; % if human..

S(p,i) = 1; % make the assigm
end
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% calculate unnormalised weight £(
% based on P(x_t | x_{1l:t-1}, s_{{
W(p) = unnormalisedweight(S(p,1l:i]

[a_th0 b th0],[a_thl b thl], N
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% keep track of the total weight
wsum=wsum+W(p);
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end

% normalise the weights
W=W./wsum;

% resample a new set of particles
0lds=S; % don't lose the old ones yet
for o = 1:nn

metropolisdemo.m | x  particlefiltersdemo.m |

' particlefiltersdemo / unnor... |Ln 82 Col 33




“RATIONAL PROCESS” MODELS



Why are we doing this again?

* Reason #1:

— MCMC, importance sampling and particle filtering
form the basic toolkit of all modern Bayesian
computational statistics

— Without them, you can’t solve anything except the
simplest of problems

e Reason #2:

— The mind has to solve problems that aren’t
simple. Probably has a similar toolkit!
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Reason

Bayesian data analysis

MCMC is a tool:

The Al survey problem is a
simple example of how
researchers in the social
sciences like to use MCMC.
That is, we specify a
measurement model for the
data, and then use MCMC to
do the inference.
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Reason #2

Computational statistics might also be
Bayesian cognition an explanatory mechanism

People have to deal with the exact
same problems... the world is complex,
and has lots of variables that you need
to draw inferences about. Maybe
MCMC & particle filtering is how
humans solve the problem!

This idea is called rational process
modelling — the idea that statistics
doesn’t just solve problems at Marr’s
computational level (using Bayes
theorem), it also provides solutions at
the algorithmic level (via MCMC, etc)
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